
'$£*■'•

CAR-TR-S93
CS-TK-:3i)2:j

xoon]4-a>i.nö2i
AuKus! 199*

Extracting Structure from Optical Flow
Using the Fast Error Search Technique

Sridhar Srinivasan

Ccnlc;- ior Auioinatioii Research
I nivcrsily of Maryland

Collc-v Park. MI) 20742-3270

Jä$§''j*

•"W*

#9%:

IMi

COMPUTER VISION LABORATORY

,*■ •/■?'&* ." 4*

CENTER FOR AUTOMATION RESEARCH

UNIVERSITY OF MARYLAND
- COLLEGE PARK; MARYLAND

20742-3275

oo

Os

CAR-TR-893 N00014-95-1-0521
CS-TR-3923 August 1998

Extracting Structure from Optical Flow
Using the Fast Error Search Technique

Sridhar Srinivasan

Center for Automation Research
University of Maryland

College Park, MD 20742-3275

Abstract

In this paper, we present a robust and computationally efficient technique for esti-
mating the focus of expansion (FOE) of an optical flow field, using fast partial search.
For each candidate location on a discrete sampling of the image area, we generate a
linear system of equations for determining the remaining unknowns, viz. rotation and
inverse depth. We compute the least squares error of the system without actually solving
the equations, to generate an error surface that describes the goodness of fit across the
hypotheses. Using Fourier techniques, we prove that given an N x N flow field, the
FOE can be estimated in 0(N2 log N) operations. Since the resulting system is linear,
bounded perturbations in the data lead to bounded errors.

We support the theoretical development and proof of our algorithm with experiments
on synthetic and real data. Through a series of experiments on synthetic data, we prove
the correctness, robustness and operating envelope of our algorithm. We demonstrate the
utility of our technique by applying it to the problem areas of 3D stabilization, moving
object detection, rangefmding, obstacle detection, and generation of 3D models from
video.

Keywords: Fast Partial Search, Focus of Expansion and Optical Flow

The support of this research by the Office of Naval Research under Grant N00014-95-1-0521 is
gratefully acknowledged.

1 Introduction

The extraction of the three-dimensional structure of a moving scene from a sequence of
images is termed the structure from motion (SFM) problem. The solution to this problem
is a key step in the computer vision tasks of robotic navigation, obstacle avoidance, time
to collision, recognition of solid objects, and surveillance. Recent interest in this area
has been sparked by the desire to build 3D models from video for virtual reality, video
conferencing, manufacturing and medical applications. The proliferation of powerful
computing machinery and video streams has transitioned the problem from a purely
theoretical domain to one of practical interest. Mathematical analysis of SFM proves the
nonlinear interdependence of structure and motion given observations on the image plane.
While this problem has received considerable attention by researchers, the proposed
solutions tend to have several shortcomings. Yet, it is well recognized that the human
visual system performs the task of simultaneously estimating motion and the qualitative
depth structure of a moving scene quite efficiently and accurately.

Psychophysical experiments on human subjects reveal that the first stage of processing
in the human visual system is the estimation of the motion field. Methods for estimating
the structure from the motion field are referred to as differential techniques, as opposed
to discrete methods which rely on two or more distinct views of the scene. The optical
flow, which is defined as the 2-D projection of the 3D motion field, is composed of the
horizontal and vertical velocity fields, u(x, y) and v(x, y). These are related to the motion
and scene depth according to

u(x, y) = (-tx + xtz)g(x, y) + xyux - (1 + x2)uy + yuz

v(x,y) = (-ty + ytz)g(x,y) + (l + y2)ux-xyu;y-xuz (1)

where the translational and rotational motion vectors are (tx,ty,tz) and (ux,ivy,uz) re-
spectively. g(x,y) = 1/Z(x,y) is the inverse scene depth, and all linear dimensions are
normalized in terms of the focal length / of the camera. Such a pair of equations ex-
ists for every point (x, y) on the image plane at which optical flow can be determined.
Assuming there exist M such points, there are 2M equations and M + 5 independently
determinable unknowns. Of the latter, M unknowns are related to scene depth and the
remaining five are the determinable motion parameters. One obvious means of simplify-
ing the system is to eliminate the depth map g(x,y) from the above equations. Such an
operation gives rise to a nonlinear system of equations in five determinable unknowns.
In practice, however, the elimination of depth is very sensitive to noise in the data u,v,
which is compounded by the nonlinear nature of the resulting equations.

The pioneering psychophysical experiments by Wallach and O'Connell [1] and Gibson
[2, 3] hypothesize the simultaneous recoverability of structure and depth from an optical
flow field. This is quantified and substantiated by Ullman [4], Nakayama and Loomis
[6], and Koenderink and van Doom [5]. The early approaches by Longuet-Higgins and
Prazdny [7], and later by Waxman and Ullman [8] derive closed-form solutions to the SFM
problem by examining derivatives of the optical flow field, with an underlying assumption
of smoothness of the 3D surface. Bruss and Horn [9] and Adiv [10] propose nonlinear
solutions which minimize the squared error between the observed and predicted flows.
While both the approaches are iterative, the former is global while the latter subdivides

the flow field into smooth patches with a mechanism that allows them to be combined.
Linear approaches to SFM can be traced back to the two-view solution formulated by Tsai
and Huang [11] based on point correspondences. Linear methods are applied to motion
fields by Zhuang et al. [12, 13], Waxman et al, [14], and Mitiche et al [15]. Prazdny [16]
subdivides the SFM problem by first hypothesizing the rotational component of motion,
and then solving for the remaining variables by means of a nonlinear system of equations.
In a related manner, Lawton [17] searches for the translation direction at discrete points
on the surface of a unit sphere he terms the translation direction sphere. A good summary
of past literature and algorithms is provided in the books by Mitiche [18] and Weng et
al. [19].

Among the more recent SFM literature are the solutions due to Jepson and Heeger
[20] and Gupta and Kanal [21], both of which eliminate depth and rotation variables from
(1) to solve for translation using a linear constraint. Direct techniques, first proposed
by Aloimonos and Brown [22], and later expanded by Negahdaripour and Horn [23] and
Horn and Weiden [24], altogether bypass computation of the motion field by operating
on raw luminance data. Several additional cues have been used to formulate a solution to
the SFM problem, prominent among which are stereo images, stereo flow fields, and long
sequences. These are not pertinent to the current work and are not discussed further.
One important constraint that has gone largely unnoticed (expect as a means of resolving
ambiguities in the form of multiple solutions) is the non-negativity of depth. This has
been used in the recent approaches in a direct manner by Fermiiller and Aloimonos
[25, 26], and more indirectly by Fejes and Davis [27].

The stability of algorithms that eliminate the depth field g(x, y) from (1) [11, 12, 13,
14, 15, 21] is questionable, although Gupta and Kanal [21] have claimed experimental re-
sults demonstrating some amount of noise resilience. Moreover, these algorithms discard
valuable information in the form of nonlinear equality constraints which are not simple
to enforce. Likewise, assuming smoothness of the depth field or optical flow field is not
always valid, more so when there is noise in the flow estimates. Thus, differentiating
noisy flow fields [7, 8] in order to solve SFM is highly undesirable. On the other hand,
the method due to Fejes and Davis [27] requires strong variations in the underlying depth
map (and thereby in the optical flow field) to work at all! Nonlinear optimization-based
solutions [9, 10, 23] are relatively stable in the presence of noise. However, minimiz-
ing a nonlinear cost function exposes the solution to the pitfalls of local minima and
slow convergence. The drawback of search-based methods [16, 17] is their slow speed of
execution.

In this paper, we present a fast partial search technique for locating the focus of
expansion (FOE) from a motion field. The focus of expansion is hypothesized to lie within
a bounded square on the image plane. For each candidate location on a discrete sampling
of the plane, we generate a linear system of equations for estimating the remaining
unknowns which are the rotational velocities and inverse depth field. We compute the
least squares error of the system without actually solving the equations, to generate an
error surface that describes the goodness of fit as a function of the hypothesized focus
of expansion. Our technique exploits the symmetry of (1) and uses Fourier techniques
to vastly reduce the computational burden of this method based on partial search. The
minimum of the error surface occurs at a discrete location very close to the true FOE. For

an image of size TV x TV in which the discrete sampling is at integer pixel locations and the
FOE is assumed to occur within the image area, the order of complexity in computing
the error surface is only 0(N2 log TV). Our method does not try to eliminate the depth
field from (1). Since the resulting system is linear, bounded perturbations in the optical
flow estimates lead to a deterministic, bounded offset of the error surface minimum from
zero. Noise resilience is inherent in this linear formulation.

A significant deviation of our work from conventional techniques is that the error
surface we generate gives us a distributed representation of the confidence, quantified in
terms of the mean squared error over the solution space. In a similar manner, Simon-
celli argues for a distributed representation of the optical flow field of a sequence as an
alternative to a unique solution [28]. He shows that the computed error of a candidate
solution is related to its likelihood of being the true solution. In a Bayesian framework,
a distributed representation allows for error covariance propagation. Likewise, we claim
that the error surface embeds information regarding both the presence of the true FOE
and a confidence measure. A relatively flat error surface indicates low confidence in the
solution whereas a sharp dip indicates high confidence.

In order to demonstrate the superiority of our approach over existing techniques, we
use four criteria, viz. correctness, robustness, operating range and utility. At a minimum,
any valid solution to a problem must be correct, given a perfect input data set. This
is our first criterion, which we prove first in theory and then demonstrate on artificially
generated perfect flow fields. Next, we show the robustness of our method by experiments
on noisy and sparse flows. In order to traverse the operating range of the algorithm,
we evaluate its performance over a range of fields of view and depth map structures.
Finally, we consider several real-world applications calling for 3D SFM to demonstrate
the utility of our approach. We use real imagery in this final set of experiments covering
3D stabilization, rangefinding, independent motion localization and obstacle detection.

This paper is organized as follows: Section 2 introduces the concept of partial search
and the assumptions of our approach. The theory and derivations of our technique
are explained in Section 3, with some of the proofs given in the Appendix. Section 4
extends our technique by relaxing certain assumptions made earlier. The experiments
on synthetic and real data are detailed in Section 5. Finally, we conclude with a few
remarks in Section 6.

2 Problem Formulation

In the remainder of this paper, we will assume a camera-centered coordinate system whose
origin coincides with the center of the imaging lens and whose .XT-plane is parallel to the
image plane. We will also assume that the focal length of the lens is known accurately,
and that the linear distance unit is normalized by the focal length, i.e. / = 1. The Z
axis lies along the optical axis and the image plane lies on Z = -1, which is the focal
plane of the camera. Equation (1) can be rewritten as

u(x,y) = -(x-Xf)h(x,y) + xyux-(l+x2)uy + yujz

v(x,y) = -(y-yf)h(x,y) + (l + y2)cüx-xytüy-xuz (2)

where (xf,yf)
d= (fs *f) is known as the focus of expansion (FOE) and h(x,y) is the

scaled inverse depth map of the scene being imaged, h(x,y) = zf^)-
3D motion algorithms aim at computing the 3D motion parameters of the camera,

viz. t = (tx,ty,tz) and w = (ux,wy,uz). It can be seen that t can only be recovered up
to a scale factor, i.e. if (t = t0,u = u;0) is a solution, so is (mi0,^o)- The 3D structure
of the scene h(x, y) can be recovered, once the 3D motion parameters are known. Many-
techniques build on the first step in which h(x, y) is eliminated from (2), but this makes
the solution very sensitive to noise in flow estimates. In order to achieve noise resilience
and yet keep the computational demands of the solution within reasonable bounds, we
wish to devise a linear solution to the SFM problem. The technique we propose is based
on fitting a linear model to each candidate hypothesis over a bounded search space.

2.1 Partial Search

Exhaustive search has seldom been accepted by theoreticians as the best technique for
arriving at the solution of a set of equations, due to its perceived inelegance and lack
of mathematical structure. However, in practice exhaustive search is used when other
methods fail, and when it can be performed in a reasonable amount of time. Suppose
the nonlinear set of equations for which a solution is desired is given by

f(x) = 0, x€$M,0€$K,K>M (3)

Exhaustive search for a solution xe involves (i) enumerating a finite set of candidate
solutions X = {x0,Xi,...} that adequately cover the solution space, (n) computing an
error metric (e.g. ||f(x;)||2) which associates each candidate solution x,- with a compliance
measure, and (iii) locating the minimum error and corresponding candidate solution,
which for the squared error metric is

xe = argmm{||f(x)||2} (4)

In general, the order of complexity of exhaustive search is proportional to the cardinality
\X\ of X. This can get unmanageably large as the dimensionality M of x increases.

An intermediate approach to searching for all the components of the solution is to
enumerate only a few components and solve for the remaining components based on the
hypothesis. For example in (3), assume that the argument x can be partitioned as

x = ae^,be &M2,Mx + M2 = M (5)

and given a;, (3) can be solved for the remaining components b; with a small number of
computations. We will call a the search component and b the dependent component of x.
Partial search of a solution xp is performed by (i) enumerating a finite set of candidate
partial solutions A £ {a0,ai,...} that adequately cover the search component space,
(n) computing the dependent component b; corresponding to each a,- € A that satisfies
(or closely satisfies) (3), (iii) computing an error metric, for example ||f([a(-|b(-]')||2 for
the squared error case, and (iv) picking the candidate solution corresponding with the

•minimum error. Step (ii) can be defined as a minimization over the continuous space of
permissible b of the same squared error metric to formulate the partial search solution
X« clS

a = arg mm mm f .
a€.4 b I y b

II / a* b* = arg min f
bib (6)

Partial search separates the problem into a search and a minimization. In general, the
complexity of the original problem is proportional to the cardinality \A\ of A, and to the
number of operations required to compute b, given a,-. It may be possible, depending on
the problem, to simplify certain steps in the partial search procedure, leading to further
reduction in complexity. This paper approaches the SFM problem through partial search
and exploits the symmetry of the problem to minimize the computational requirement.

When the optical flow u, v is known at M points {(x0, y0), (xlt t/i),... (xM-i, VM-I)},

we get M instances of (2) with 2M linearly independent equations1 and M + 5 unknowns
in all. An exhaustive search for a solution must consider the combinatorial multiplicity
of the M + 5 unknowns. This gets unwieldy even when M = 5, which is the minimum
number of equation sets needed for a unique solution. For the sake of argument, assuming
that there are L possible discretized permissible values for each of the scalar variables,
exhaustive search computation requires 0(LM+5) operations. A crude search with 5%
uncertainty in each variable (i.e. L = 10) and with M = 5 observed points gives rise to
1010 combinations, which escalates to over 1015 when the number of observations doubles
to 10. Exhaustive search is clearly not an alternative, and indeed we require that the
number of search combinations be independent of the number of observations since the
latter can potentially be huge.

In order to restrict the search to a finite number of dimensions, the search component
a must not include the depth variables h(xi,yi). Of the remaining five variables, the
rotational components are linearly related to the observation, which in this case is the
flow field. Thus, in addition to the scaled inverse depth map, rotation forms an ideal
candidate for including in the dependent component. The search component comprises
xj and yf which are the focus of expansion, and the dependent component includes the
rotation and depth variables which number M + 3 in all. It can be seen in (2) that the
dependent component and observation are linearly related when the search component
or FOE is fixed. Given a search component a,- = (xfi,yfi)', the dependent component
b8- can be solved for by means of a (M + 3) x (M + 3) matrix inversion which takes
at most Ö(M3) steps. The worst-case computational requirement of this partial search
approach is Ö(M3L2), which is combinatorially smaller than Ö(LM+S). Yet even this
number is too large for practical use. The remainder of this section analyzes the linear

Except for the singular case where there is no rotation and one of the M points coincides with the
FOE.

system obtained when choosing a candidate search component, with the eventual aim of
reducing the order of complexity of partial search.

2.2 Assumptions

We will begin the analysis by enumerating the assumptions which simplify the under-
standing of our approach. As we progress, we will loosen some of the assumptions until
only the essential ones remain. Further, we will argue that the assumptions are realistic
and commonly hold in practice. In the following paragraphs describing the assumptions,
the first sentence is the initial assumption made, for ease of understanding. The sec-
ond sentence, which is italicized, is the minimum necessary to prove our method. The
remainder of the item is a discussion of the assumption.

• The input flow field is defined over a square region, of size N x N, where N — 2k.
Can be fully relaxed. With a square field whose side is a power of 2, we can use
the fast Fourier transform (FFT) in some of our later computations. Other sizes
do not change the formulation, but might lead to certain bounded inefficiencies in
the computational requirement.

• The input flow field is dense. Can be fully relaxed. We first prove our result by
assuming that a dense flow field is available for the N x N image. Later, we discuss
the handling of sparse flow fields. However, the complexity of the proposed method
is related to the size of the image for which the flow is available and not to the
number of equation sets {i.e. the number of points at which the optical flow is
known). Thus, the number of computations required to solve the problem given a
sparse flow field is equal to the corresponding count given a dense flow field.

• The FOE lies within the area defined by the input flow field. The FOE lies within a
bounded region. The primary aim of this effort is directed toward situations where
there is a large forward translational motion, like vehicle navigation. In this case,
the FOE almost always lies within the image. In extreme situations where the FOE
is very large or at infinity, tz is very small in comparison with one or both of tx and
ty. Equation (1) can be approximated as

u(x, y) » -txg(x, y) + xyux - (1 + x2)coy + yuz

v(x, y) « ~tyg{x, y) + (1 + y2)wx - xyuay - xuz (7)

For this system of equations, there are only M + 4 independently determinable
variables since there is still a scale ambiguity in the system. However, that is not
all. Vision systems in practice tend to have small fields of view, or equivalently,
large focal lengths. In this case, x, y < 1 and the contribution of the second terms
in (7) is small, leading to a first-order approximation

u(x,y) « -txg(x, y) - uy + yuz

v(x, y) « -tyg(x, y) + lux - xuz (8)

The instability of system (7) is clear when one notes the occurrence of multiple
solutions in its approximation (8). Assume that {tx,ty,üjx,uy,u>z,g0,gi,.. . <7M-I}

6

is a valid solution for the M instances of (8). Then the sets {tx,ty,ux + ty8,uy -
tx8,uz,g0 + S,gi + 8,. ..gu-\ + 8} are also valid solutions for all values of 8 > 0.
The positivity constraint on 8 ensures that depths are non-negative. An analysis of
the instability of SFM under various conditions is provided in Adiv [29] and Young
and Chellappa [30].

Secondly, when performing 3D SFM over a long sequence of frames, the location
of the FOE at the previous time instant is known after the first frame for which
the motion field is recovered. If it can be assumed that the FOE does not change
drastically between frames, the search window for the FOE at the current frame
can be shifted and re-centered around the estimated FOE at the previous frame.
Under the relaxed assumption that the FOE must lie within a bounded area, the
re-centering strategy will work.

Finally, it must be borne in mind that the output of our algorithm is not a single
solution; rather, it is an error metric for the entire search space. When the FOE
lies outside the search space, we expect that the shape of the error surface will show
a dip in the direction of the true FOE. In our experiments, we have observed that
when the true FOE lies outside the search area, the minimum is attained at its
periphery, indicating the likelihood of the true minimum lying beyond. This flags
an error condition and provides a candidate offset by which to shift the search area.

In summary, the only non-trivial situation where we expect the proposed method to
fail is when the following three conditions simultaneously hold: (i) wide field of view,
(«') very small forward translation, and (in) no available estimate of the FOE from the
prior frame that can form a reasonable guess to recenter the search area. Even in this
situation, if the minimum error is attained at the search boundary (which is very likely
to be the case), we can iteratively re-center and locate the error surface minimum. In
the next section, we develop the theory behind our approach.

3 Approach

Let the true FOE be (xf,yf). Assuming that the flow field is of size N x JV and all JV2

flow estimates are available, the optical flow at pixel location i,je{0,l,...,N — l}2 is
given by

Ujj ~(xitj - Xf)hij + xitjyitju}x - (1 + x?j)uy + yitju}z

vi,i = -{yij-yf)kj + 0- + yij)wx-xijyijuy-xijux (9)

where y = H^DZ2, Vi- = H"^)/^ and {h,u,v}ij = {h,u,v}(xiJiyij). The trans-
formation between the pixel coordinate system point (i,j) and the normalized 3D coor-
dinate system point (x, y) on the image p] :ne is reversible and is given by

(10)

Thus, the optical center lies at (^=1, ^f1) in the pixel coordinate system. WLOG, we
will switch between coordinate systems to simplify notation wherever necessary. Define

r*j = (xijytj -(1 + xy yij)

Si,j = (l + Vi,j -Xi,jVh3 ~XiJ)

Q =

h

u

P(s/>y/) =

'0,0
S0,0

S0,l

rAT-l,JV-l
5JV-1,7V-1

— (^0,0 ^0,1 • • • ^2V-l,jV-l J

(«0,0 ^0,0 «0,1 V0ii . . . UN-l.N-1 UjV-l.JV-1 J

xo,o— Xj 0 0
2/0,0 - Vf 0 0

0 x0,i - xf 0

0 S/o,i - Vf 0
0 0 X0,2 - Xf

0 0 j/o,2 - Vf

0

XN-I,N-I — Xf

VN-1,N-1 ~ Vf

MxfiVf) = p(xfiVf) Q

Xo
ÜJ

(11)

We will drop the argument (x/,j//) of P(x/,j//) and A(xf,yf) where it is obvious. The
above definitions allow us to consolidate the motion equations for all individual flow
vectors in the brief form

P(*/,y/) Q1
u

u (12)

i.e.
A(z/,2//)x0 = u. (13)

Replacing the unknowns Xf, yf and x0 by the hypothesized variables Xh, yh and x we get
the general condition

A(xh,yh)x-*u (14)

where the true solution exactly satisfies (14).
We now define a squared error cost function C(xh, yh-, x) as

C(xh,yh,x) = \\A(xh,yh) x\\l

8

(15)

Since

C{xh,yh,x)>0 (16)

C(x/,y/,xo) = 0 (17)

(i) the true solution to the system (14) minimizes the cost function C(), and (ii) all
minimizers of C() satisfy (14) exactly. Thus, we have reduced the original problem to

which can be decomposed as
minmmC(xh,yh,x) (19)

The inner minimization occurs at the least squares (LS) solution x^s of A(xh,yh) x —>
u. Later, we will prove uniqueness of XLS- Indeed, C() can have more than one
minimizer. In the separable form (19), existence of multiple minima is indicated by
existence of multiple values of Xh, yh (and thereby of x) attaining the minimum for C{).
In this situation, exhaustive search over the entire search space will pick out all the valid
solutions. However, it is not difficult to see that even with coarse discretization, the
number of free variables is too large to permit exhaustive search. Referring to our earlier
discussion of search, we see that partial search is an ideal technique for solving (19).

In order to perform partial search, we set {xh,Vh} to be the search component and x
to be the dependent component. We discretize the search component space at midway
locations between four pixels2 over the entire image area, in line with our assumption
that the FOE lies within the image. Later, we will relax the search component space to
be any uniformly discretized rectangular set of points, not necessarily within the image.
We do not dispute that one could potentially construct a pathological counter-example
that lets the minima "slip through" the lattice formed by discrete values. But it is our
belief that such situations do not occur in practice. We will experimentally justify the
discretization process.

The LS solution xLS of A(xh:yh) x —► u satisfies

A'u (20)

P' 1
Q' j u (21)

where the arguments of A and P have been dropped. D =f P'P is a diagonal matrix,
given by

A'AXLS =
P'P P'Q
Q'P Q'Q XiS =

D = Diag{s2 + y2}
D_I
 =Dia? fay (22)

where X{ and j/,- are functions of (xh, yh)

xi — x\i/N\,irao6N — Xh

y% = y\i/N\,imow -yh (23)

2Hypothesizing the FOE to lie at pixel locations leads to a singularity.

9

We shall assume here that X{ and j/t- are never zero. This can be achieved by ensuring
that the discretization grid for FOE hypotheses is not coincident with the pixel sampling
grid. Even this restriction can be overcome, but we shall deal with it later, assuming for
now that D is never singular. One way of guaranteeing this is to pick the hypothesized
FOE to lie midway between pixels. When D is nonsingular, XLS is unique. Applying
appropriate pre-multiplying matrices, we can manipulate the system as shown:

D P'Q
Q'P Q'Q

I D^P'Q
Q'P Q'Q

I D^P'Q
0 Q'Q - Q'PD^P'Q

x =

x =

u
P'

Q'
D-lp/

Q'
D-lp,

Q'tl-PD-1?')

u

u

Introducing matrices M € $2N*2N and M € &3x3 defined as

def M = (I-PD"1^)
1

= BlockDiag^? + .n

M =f Q'MQ

yt
-XiVi

Xil/i

we get

I D^P'Q
0 M

I D'P'Q
0 I

x = u

X

D-lp/

Q'M
D-ip/

M^Q'M

D-XP'(I - QM^Q'M)
M^Q'M

u

u

The error Ax — u is

Ax — u =
D^P'p-QM^Q'M)

M^Q'M

giving the squared error

I Ax — ul

P Q

(MQM
-1

Q'M - M) U

= U'(MQM
_1

Q'M-M] U

u — u

-1. .-,-1.
= u'M2u + u'MQM Q'M2QM Q'Mu

-,-i.
-2u'M2QM Q'Mu

(24)

(25)

(26)

(27)

(28)

(29)

10

Again, note that A, M and M are functions of (xh, yh). It can be easily verified that M
is idempotent, i.e. M2 = M. (29) simplifies to

_-i
|| Ax - u||2 = u'Mu - u'MQM Q'Mu (30)

The most naive strategy for computing the least squared error, or equivalently, of
performing the inner minimization in (19), is to explicitly solve the linear system for the
unknown x and use this estimate to evaluate the squared error. Without assuming any
sparseness or symmetry in the coefficient matrix A, the system can be solved by matrix
inversion. Keeping in mind that x € diN2+3, the order of complexity of estimating x in
this manner is Ö(N6)3. Exploiting the structure of A leads to dramatic improvements.
From (25) and (26), it can be seen that computing matrices M and M requires 0(N2)
operations, which is the complexity of estimating x and the squared error as well. Taking
into account the outer minimization search leads to an overall complexity of Ö(N8) for
the matrix inversion method and Ö(N4) by exploiting symmetry. In addition, examining
(30) reveals that the only data-dependent term is u. Thus, given sufficient memory,
the data-independent terms can be pre-computed and stored, for each value of {xh,yh).
However, even with this strategy, the overall complexity cannot be brought down below
0(N4).

In what forms the core of this effort, we will show that the structure in A can be
further exploited so that the errors can be computed directly, without computing the
solution x explicitly. Moreover, the least squared errors for all the candidate hypotheses
can be computed in a single step, which leads to an overall complexity of 0(N2 log N).
At first, this seems ridiculous since factoring out AT2 from the complexity introduced by
the outer search leaves 0(log N) which is insufficient even for vector addition. Yet, it is
the simultaneous estimation of all errors in the search space that allows such a low overall
complexity. We introduce the notion of Fast Computability in the following section.

3.1 Fast Computability

A few preliminary definitions and theorems are necessary before we proceed with the
proof of our technique. Proofs of the Fast Computability theorems are given in the
Appendix.

Definition 1 Let S € %NxN. The cyclic shift S[i0, jo] ofS by (i0,j0) is defined by

S[«0, jo]i,j — S({+j0)modiV,(j+Jo)modAr (31)

Definition 2 The lexical ordering of a matrix S e $NxN, denoted by S e UN2xN\ is
defined by

Sij = [£(S)k,- = { ° {*{ (32)

C is the lexical ordering operator. The inverse operation is defined only on diagonal
matrices:

 [^(Diagisk))]^ = siN+j (33)
3More accurately, 0(N2loS27) [31]!

11

We denote the space of such diagonal matrices by CN ($t), where the argument 9£ denotes
the space of each element s,- of the matrix S.

Definition 3 The cyclic shift of a lexically ordered matrix S € £N (91), by (^o, jo), is

S[io,jo] = C (C-\S[ioMJ) = £ (Sfo,jo]) (34)

Definition 4 The quantity q(io,jo) is said to be Fast Computable (FC) if q(io,jo) can
be evaluated Vi0, jo S {0,1,..., N — 1} in 0(N2 log TV") computational steps.

Theorem 1 Let a,b € ^ and S e CN\U). The quantity q(i0,jo) € & defined by
?(*o, jo) = a'S[i0,jo]b is FC.

Proof: Appendix A.l.
We now extend Theorem 1 to a more complicated situation where each scalar element

of the above data structures, including matrices and vectors, is replaced by a doublet.
The doublet corresponding to a scalar matrix entry is defined as a 2 x 2 submatrix and
a doublet of a vector component as a 2-vector. In other words, each scalar element in
the matrices is replaced by a 2 x 2 real matrix, and each scalar element in the vectors
by a 2 x 1 real vector. The concepts of cyclic shift, lexical ordering and inverse lexical
ordering are redefined below.

Definition 5 Let

s =

^*>ioo
k»Jio

^2X2

So,o

Si,o

So,i

Si,i . ■ •

So,./v-i

SI,JV-I

SN-I,O SJV-I,I Siv-i,jv-i .

So,o00
S

0,OQI SO.IQO So,AT-l01

So,o10 S0,on
so,iio • • So,JV-ln

si,o0o Sl-001 Si-ioo Si,jv-i0i € $ 2Nx2N (35)

SiV-l,010 Sjv_i,on SJV-I,I10 Sjv_i,AT-ln

The cyclic shift S[io, jo] ofS by (io,jo) is defined by

S[io,jo]jJ — S(j+j0)modAr,(j+_?0)modJV

^io modN,jo modiV

i.e. S[i0,jo] =

Sr/v- (N-l+io)raodN,jomodN

^i0iaodN,(N-l+jo)TaodN

S(JV-l+i0)modiV,(iV-l+jo)modiV

(36)

12

Definition 6 The lexical ordering of the doublet matrix S shown in (35), denoted bv
SeW2*™2, is defined by

S = BlockDiag { S \i/Nj timodN }

= BlockDiagll ^li/Ni'imodN°o s[i/Nj,imodN01 \] ^

In keeping with Definition 2, we will denote the space of permissible S matrices which
constitute the lexical ordering of a doublet matrix by £N2 ($t.2*2).

Definition 7 The cyclic shift of a lexically ordered matrix S G £N2($t2x2) is defined bv
(34).

Theorem 2 Let S G £*(&**), and a, b G &2iv2. The quantity q(i0,j0) = a'S[i0,jo]b is
FC

Proof: Appendix A.2.

3.2 Non-cyclic Shift

The last step in setting the stage to prove fast computability of the squared error is
extending Theorem 2 to non-cyclic shifts. When a space-limited data sequence is shifted
across a viewing window, points that were undefined earlier appear within the window.
In a cyclic shift, the data points of the original sequence that disappear from the viewing
area are wrapped around to fill the locations within the newly visible area. However,
when the shift is not cyclic, it is necessary to define its behavior, especially with regard
to how emerging areas are filled in.

Definition 8 The non-cyclic jhifi S{i0J0) of matrix S G &NxN by (i0J0) is defined in
terms of the superset matrix S G 9t2Nx2N by

S(»o,io),j = Si+io,j+h, Vio, jo G {0,1,..., N - 1}. (38)

Definition 9 The non-cyclic shift of a lexically ordered matrix S G CN2{W) is defined
by

S[ioJo]=jC(S{ioJo)) (39)

Theorem 3 Let a,b G 3^ and S G /^(Ä). The quantity q(i0Jo) € & defined by
q(io,jo) = a'S(i0,jQ)b is FC.

Proof: Appendix A.3.
We now extend Theorem 3 to the doublet space.

Theorem 4 Let a,b G ft™2 and S G £N2(%2*2). The quantity q(i0,j0) G » defined by
9(*o,io) = a'S{io,j0)b is FC

13

Proof: Appendix A.4.
Finally, we extend the above theorem to arbitrary finite-dimensional aggregations in

the following results.

Corollary 1 Let S € £N2($2x2), a € $l2N2 and B € &2Ar2>Cp for some arbitrary integer
p>\. The quantity q(io,jo) = a'S{io,jo)B is FC.

Proof: Writing out q(io,jo) in terms of its components,

?(*o,jo) = (a'S[i0,jo]bo a'S[i0,j0]bi ■■■ a'S[i0,jo]bP-i) (40)

where B = (b0 W • ■■ &P-i)- Each of the components of q(io,yo) 1S FC. When p is a
constant, the overall computational steps are still 0(N2 log JV).

Corollary 2 Likewise, let A,B € 3£2Ar2xp, p feeing an arbitrary constant. Q(io,jo) =
A'<S[i0,io]5 is FC.

Proof: As in Corollary 1.

3.3 Basic Proof

Next, we show how the squared error given by equation (30) is Fast Computable, for every
choice of (xf,y;). This enables the likely solution space to be searched exhaustively in
G(N2 log N) steps. First, we use (10) to define the pixel coordinate (ih,jh) corresponding
to the hypothesized FOE (xh,yh) as

ih_(fxh + Z? (41)

We define the search space for (ih,jh) to be ||, §,..., N - || . The candidate solutions
lie at half-pixel displacements along a regular grid covering the image area. In the
discussion ahead, we will interchangably use the pixel and XY coordinate systems.

Lemma 1 M € CN\^2x2)

Proof: From (25) and Definition 6.

Definition 10 The superset matrix M € sft*NxW ^ a douwet matrix defined by

(i-iV+|)2 _(i-iV + I)(i-Ar+I)
L-(i-N+i)(j-N+j) (i-N + l)2

JVki" (i-N+\)2 + (j-N + l)2 (42)

V£,je{0,l,...,2W-l}.

14

In the above definition, the | terms are included to stagger the grid. There is a one-to-one
relation between the hypothesized location (ih,jh) and the index (i,j) according to

{kjh} ♦-» {«',J} + 2 (43)

The importance of staggering the sampling grid for the search component is seen from
(42), where the | terms prevent the denominator of the leading fraction from vanishing.
However, it must be noted that this fix is merely cosmetic since even without staggering,
the entry MJV,./V at the singular point can be evaluated using limits.

Lemma 2 M(xh,yh) = M(N -1 - [ih\ ,N—l— [jh\) to within half-pixel discretization.

Proof: From (23), (25) and (10), we have

£-1(M(^,y,))iJ

(Vi,j ~ Vhf -(xitj - xh)(yitj - yh)
-{xij - xh)(yitj - yh) (xitj - xhf

(xitj - xh)2 + (yi:j - yh)
2

(j - s? - fVHf -(i
-(i - »=L - fXh)(j - B=l - fVh)

N-l N-l
2 fXh)U 2
(i - a=* - fxhf

fVh)

(i-äfl-fxtf + ij-l^l fvhY
(44)

Comparing (42) with (44), we see that £_1(M) is a windowed version of the superset
matrix M. The location of this window (k, I) is computed by equating the indices. In
general, since the computed location may not be integral, rounding is performed. The
following equation evaluates k. I is evaluated likewise.

k-N +
N-l

- fXh

= \i + N-fxh-^}

= i + (N-l)-[fxh + ^\

(45)

(46)

= i + (N-l)-[ih\

Thus, upon discretization, we get

£"1(M(a;A,T/fe))ij = Mi+{N-i)-iih\,j+(N-i)-[jh}

which gives the non-cyclic shift relationship in mixed coordinate system notation

M(xh,yh) = M(N - 1 - [ih\,N- 1 - L?ÄJ) (47)

This result is key to tying in fast computation with the SFM problem. Lemma 2 maps the
FOE search space
of M(i0,j0).

N N
2 ' 2 to the discrete non-cyclic shifts i0,j0 € {N—1, N—2, ...,1,0}

15

Lemma 3 M is FC.

Proof:
M = Q'M(xf,yf)Q = Q'M(i0,io>Q (48)

which is FC, from Corollary 2 and Lemma 2, since Q € 3£2JV x3.

Lemma 4 M"1 is FC.

Proof: From Lemma 3, M can be evaluated over the search space in ö(N2\ogN)
operations. A 3 x 3 matrix can be inverted in a constant number p of operations. Inverting
M over all the N2 hypotheses takes N2p operations. The overall complexity is still
0(N2 log N) and hence M"1 is FC.

Lemma 5 u'Mu and Q'Mu are FC.

Proof: From Corollary 1 and Corollary 2.

Theorem 5 The squared error (30J is FC.

Proof: Evaluating (30) in the manner indicated by the underbraces in the equation

||Ax-u||2 = u^M3-u'MQ M"1 Q'Mu (49)

groups the right-hand side as a sum or product of Fast Computable terms. The products
are among 3x3 matrices and 3x1 vectors. The product and sum operations them-
selves require 0(N2) computations to evaluate over the entire search space. The overall
complexity is 0(N2 log N), and the squared error is FC

In (49), it can be seen that the terms u'MQ and M = Q'Mu are transposes of
each other. There are, in all, three quantities whose evaluation is based on the Fast
Computation theorems, viz. u'Mu, u'MQ and Q'MQ. Of these, the last term is data-
independent. In our basic solution, therefore, M and its inverse_can be computed before-
hand. Likewise, the Fourier transform of the superset matrix M, which is evaluated for
computing M, is stored in memory for later use in computing u'Mu and u'MQ. Next,
we list the steps of the basic algorithm.

3.4 Algorithm

• Step 1: Compute the superset matrix M and its Fourier transform.

• Step 2: Compute M{i0,jo) = Q'M(i0, jo)Q and its inverse for all locations of the
candidate solution.

• Step 3: Using the given dense optical flow field, compute u'M(i0, jo)u and u'M(z0, jo)Q-

• Step 4-' Form the products and compute the error for each candidate hypothesis of
the FOE.

16

• Step 5: Pick the location of the FOE corresponding to the smallest squared error.

• Step 6: Repeat from step 3 for the next data set.

The basic building block of the algorithm is a function that performs the Fast Compu-
tation a'M(i0,jo)b for the arguments a and b. Since this is central to the approach, we
have provided a detailed algorithm for this function, which we term FastCompute, in
Appendix B.

4 Relaxing the Assumptions

How does the proposed solution change if the velocity estimate u, v is not available for
a particular point (i,j) ? In such a situation the corresponding equation pair (9) is also
not available. If, with no increase in computational complexity, we can replace (9) with a
set of equations that retains the coefficients of hitj and yet does not influence the solution
in any manner, we can extend our technique to both sparse flow fields as well as non-2fc

image sizes.
Consider the equations

0 = -(xi,j - xf)hj + O^x + Quy + 0uz
0 = -(yij-Vf)hij + 0wx + Qwy+0uz (50)

The consistent solution of these equations is hij = 0, with u being indeterminate. Since
the coefficients of u> are zero, appending this set of equations to our system does not
influence the solution. Obviously, the depth at point i,j cannot be estimated. Replacing
(9) by (50) for every pixel at which the optical flow is not known preserves the structure
of P(xf,yf), although the corresponding rows of Q must be set to zero. With this
substitution, the reasoning in Section 3 holds and the FOE can still be estimated in
0{N2 log N) steps.

The above substitution allows us to zero-pad a flow field if needed to make its size a
power of 2. Moreover, since most optical flow techniques produce sparse flow fields, this
substitution allows us to interface with these methods. There is no need to interpolate
sparse flow fields — an operation which may lead to reduced accuracy. Yet another
situation calling for zero-padding is where the search area is larger than the image, even
when the latter is a power of 2 in size.

Indeed, (50) is a special case of weighting (9) by zero. By using a continuum of
weights, reliability measures of the flow field can be incorporated into the system. The
depth map must be suitably rescaled to retain the coefficients of hitj so as to preserve
the structure of P(xf,yf) and thereby validate the reasoning.

If it is known by some means that the FOE is present in an area around xQfi, yQQ,
our method can be made more effective by incorporating this knowledge into the formu-
lation. Assume that the offset in the pixel coordinate system is *0ff5 Jofi" corresponding

17

to x0ff, y0ff. The superset matrix M is redefined by

(i-ioff-^+l)2 -(i-idS-N+i)V-JoS-N + l)
-(i - ioE -N + |)(i -ioff-^V+|) (^off-^ + f)2

Mij =
(i-io$-N+l2)2 + (J-Jo$-N + l¥

(51)
Vi,i G {0,1,... ,2JV — 1}. This definition offsets the search window by i0fi,j0fi- The
remainder of the computation process remains the same. However, the offset must be
added to argmin^,^ ||A(cc/l, j/fe)x - u||2 when estimating the FOE.

Shifting the search area by an offset allows the fusion of external information into
our algorithm. For example, while processing a sequence of images, the search window
can be re-centered at the FOE estimate of the previous frame. If it is assumed that
acceleration is small from frame to frame, such re-centering improves the probability of
finding the true FOE within the search area. Alternatively, if a kinematic model exists
for the camera platform, the velocities can be predicted from the past behavior. This
provides a useful starting guess for the FOE.

Finally, we claim without proof that the overall complexity of estimating the FOE hy-
pothesized to lie in a Mx x My area (potentially offset from the center), given a flow field
of size Nx x Ny (potentially sparse), is 0(M2N2\ogM2N2), where M2 = 2^°^Mx+N^
and N2 = 2^°S2^My+Ny^. Although this is within the same order of magnitude for im-
ages whose aspect ratio is bounded, this expression is derived by tightening the Fast
Computability proofs.

5 Experiments and Results

In this section, we describe our experiments on evaluating the partial search FOE estima-
tion algorithm. Our experiments comprise two phases, viz. a first phase which measures
quantitative performance on synthetic data generated with known parameters, followed
by a second phase which examines qualitative performance on real-world imagery with
emphasis on useful applications. Using synthetic data allows us to accurately character-
ize performance over a range of situations. In the first phase, the optical flow field is
synthesized. On real data, the flow is obtained from a sequence of images using optical
flow techniques described later. The synthetic data experiments demonstrate the cor-
rectness, operating range and robustness of our algorithm. The utility of the algorithm
in solving real-world problems is shown using real data.

During the course of the experiments, the proposed algorithm is applied to the flow
field and the location corresponding to the minimum error in (30) is picked as the FOE
(x,y) (or equivalently, (i,j) in the pixel coordinate system). A correction of | pixel is
applied to each direction, to undo the effect of staggering (43). Once the FOE is esti-
mated, the angular velocity and depth map can be obtained by solving linear equations.
From (27), we can see that the LS estimate for u is

u = M_1Q'Mu (52)

which is a product of terms that have already been calculated. Therefore, the estimate
of rotation is available with no extra computation.

18

Set N / */ jf ux U)y w* d
A
B

256
256

400
400

102.0
127.5

51.0
201.5

-2.0
5.0

5.0
3.0

8.0
4.0

1.5
1.7

Table 1: Parameters used in generating synthetic data sets A and B

The depth map takes some additional effort to recover. Using (27), we get

h = D^P'p - QM^Q'Mju (53)

which requires the computation of D^P'Q and D^P'u. These take G(N2) operations.
It must be noted that the depth map is very sensitive to perturbations in the optical flow
as well as the FOE estimate, especially near the latter. Although depth map recovery is
not the main emphasis of this work, we will give relevant experimental results.

5.1 Experiments with Synthetic Data

The least squared error as a function of the hypothesized FOE is denoted by E, and is
referred to as the error surface. The minimum value of the error surface, which occurs
at (i,j), is denoted by E^n. Incorporating the round-off error in estimating the FOE,
the error in the FOE estimate, e, is given by

e = mm • 1 i -io 1 e ~ ?'° II i — i\ i — i\
II J ~ io ' II i - h 1' J ~ jo | ' |\J - h ||

(54)

where {i,j}0 = [{ij}f - \\ + \ and {i, j}x = \{i:j}f - |] + \. The \ terms compensate
for staggering of the hypothesis grid. This expression provides a 4-pixel neighborhood
associated with zero error, if the true FOE lies off the |-pixel offset grid lines along each
axis. When the true FOE is exactly on a grid point, the neighborhood shrinks to one
pixel.

In many favorable situations, our algorithm estimates the FOE with no error. We
use a secondary error metric, ew, which is the total angular error, given by

tw = \\UJ — u\ (55)

to characterize and differentiate between cases where e is not usable.

5.1.1 Generation of Synthetic Data

Using (9), we generate optical flow fields corresponding to chosen inverse depth maps,
FOEs and rotational velocities. The depth map, in the real world, is comprised of largely
smooth regions bounded by sharp discontinuities. The size of these regions varies widely.
In order to closely model the real world, the depth map is generated using a fractal
model. This is motivated by the use of fractal models for luminance images which,
like depth maps, are also composed of largely smooth regions and discontinuities. The
Fourier transform method is used to generate the depth map fractal. In this method, the

19

Set i j e Wx Uy U)z *{jj

A
B

101.5
127.5

51.5
201.5

0.00
0.00

-1.985
5.000

5.013
3.000

-7.995
4.000

0.020
0.000

Table 2: Performance on dense, noiseless flow fields

transform magnitude is chosen to be exponential, of the form (/.j? + fy)~d^2- The phase
is random, uniformly distributed in [0,27r). We call d the fractal exponent. Upon inverse
Fourier transformation, the resulting images (both real and imaginary components of the
transform) are fractals. Choosing smaller fractal exponents gives more intricate fractals.
The fractals so generated are used as synthetic inverse depth maps.

For our experiments, we chose N = 256. We generated two baseline data sets A
and B with parameters shown in Table 1. The angular velocities are in m rad, and the
focal length / is in pixel units. The FOE is shown in the pixel coordinate system, with
the origin located at the top left corner of the image frame. The i axis is down the
rows and j axis across the columns. The FOE in Set B is located at a valid grid point
while the FOE in Set A is located exactly midway between four grid points. Besides,
Set A displays a relatively large rotation along the optical axis. On the other hand,
the dominant rotation, for Set B, is along the image plane axes. In addition, the FOE
coordinates are well distributed in [0, N]. The focal length of 400 pixels reflects a normal
field of view of 35 degrees.

Fig. 1 depicts Set A: the underlying fractal depth map is shown as a grayscale image in
(a), the rotational component of the flow field in (b), the translational component alone
in (c), and the overall synthesized flow in (d). Close objects are bright while objects
at infinity are black in Fig. 1(a). The confounding of rotational and translational flow
is clear from (b),(c) and (d). In particular, there are areas in Fig. 1(d) where the flow
field alternates direction. Such inflections occur at points where neither the rotation nor
translation is dominant. Set B is similarly depicted in Figs. 2(a)-(d).

5.1.2 Sensitivity Analysis on Synthetic Data

Next, we look at the performance of our algorithm on the synthetic data sets. Sets A
and B will serve as the benchmark. For analyzing the sensitivity of our algorithm to a
particular parameter p, we generate an ensemble of flow fields using different values of p,
keeping the remaining parameters fixed to those of A and B. To begin with, we assume
that the focal length is known accurately. In Section 5.1.7, we examine the effect of errors
in the focal length estimate.

5.1.3 Ideal Case

With a perfect flow field and accurate focal length estimate, our algorithm locates the
FOE without error. The rotational error ew is zero for Set B which lies on a valid grid
point, but non-zero, though small, for Set A, which lies between grid points. These results
are shown in Table 2. The rotational velocities and error ew are in 10~3 rad. Contours of

20

Noise Sparsity
a 77 (approx.) 100% 80% 60% 40% 20%

0.0
0.1
0.2
0.4
1.0

0.00
2.65
5.29
10.51
25.08

0.00
0.00
0.00
1.00
5.41

0.00
0.00
0.00
1.00
9.80

0.00
0.00
0.00
1.21
3.55

0.00
0.00
0.00
1.12
6.77

0.00
0.00
0.50
0.50
6.62

Table 3: FOE estimation error e as a function of the noise and sparsity of the input flow
field

the error surface E are plotted in Figs. 3(a) and (b) for sets A and B respectively. The
true location of the FOE is marked by a + and the estimated location by a x.

5.1.4 Performance with Sparse/Noisy Flows

In the real world, optical flow is seldom determined at all points in an image with cer-
tainty. Besides, the flow estimates are typically noisy. The sparsity of flow depends on
the specific optical flow algorithm chosen, the presence of local high-frequency informa-
tion, and the existence of a coherent motion across the image. We simulate a sparse
flow field by randomly including or discarding the flow at a given pixel, according to an
i.i.d. binary distribution. We realize noise in the flow field by adding an i.i.d. zero-mean
Gaussian process with variance cr to each component of velocity. The noise level 77 is
measured according to the angular error metric employed in [32], given by

77 = E cos
-1 / v0•v

vo
(56)

where v0 = (u v 1)', v = v0 + (r}u r)v 0)' and r}u,r)v ~ Af(0,cr). 77, measured here in
degrees, is insensitive to the magnitude of the motion vector and offers a normalized
measure against which a range of velocities can be compared meaningfully.

We simulated flow fields corresponding to five combinations of sparsity, viz. 100%,
80%, 60%, 40% and 20%, and five combinations of noise level, a = 0,0.1,0.2, 0.4 and 1.0.
The angular error 77 corresponding to a is approximately the same for a given a, over
sets A and B and over all sparsity levels. The error e in estimating the FOE using our
algorithm is tabulated as a function of noise and sparsity in Table 3. Fig. 4 represents
the worst case scenario. The flow fields generated with cr — 1.0 are shown in Fig. 4, (a)
Set A with 80% density and (b) Set B with 20% density. Figs. 4(c) and (d) plot the error
surface contours with the true FOE (+) and estimate (x) corresponding to (a) and (b)
respectively, showing good compliance of our solution.

5.1.5 Efect of Depth Structure

Early 3D SFM techniques that assume a smooth flow field tend to fail when there are
discontinuities introduced by busy depth maps. Likewise, the newer techniques that ex-
ploit depth non-negativity minimally require busy depth maps to work at all. One of the

21

d i 3 e CJX Uy w» Cc

Set A
Planar 102.5 51.5 0.0 -1.989 4.985 -8.002 0.019

1.7 101.5 50.5 0.0 -2.014 5.014 -8.009 0.022

1.5 101.5 50.5 0.0 SETA
1.3 101.5 50.5 0.0 -2.012 5.015 -7.992 0.021
1.1 101.5 50.5 0.0 -2.009 5.014 -7.999 0.017

SetB
All 127.5 201.5 0.0 5.000 3.000 4.000 0.000

Table 4: Performance as a function of depth structure quantified by the fractal exponent

Field of View Noise Level Estimates

/ 6 (degree) V a i j e w* Uy &z ao
Set A

200 65.2 10.0 0.408 101.5 51.5 0.00 -1.935 5.060 -7.959 0.097

280 49.1 10.0 0.368 101.5 50.5 0.00 -2.018 5.009 -8.011 0.023
560 25.8 10.0 0.512 101.5 51.5 0.00 -1.985 5.007 -8.018 0.024

800 18.2 10.0 0.820 94.5 49.5 7.07 -2.003 5.055 -7.921 0.096
Set B

200 65.2 10.0 0.372 127.5 201.5 0.00 5.010 3.002 3.996 0.011
280 49.1 10.0 0.345 127.5 201.5 0.00 5.007 3.011 3.968 0.035

560 25.8 10.0 0.580 125.5 199.5 2.83 4.990 3.016 4.026 0.032

800 18.2 10.0 0.910 130.5 205.5 5.00 5.022 2.984 3.987 0.030

Table 5: Performance as a function of field of view

merits of our approach is its applicability to both of these extremes and to intermediate
cases. We validate this claim by studying performance on flow fields simulated using sev-
eral depth maps generated by a range of fractal exponents d. Moreover, we also consider
a planar depth map for comparison, given by ^planar(

i!
5i) = Co + Cxi + Cyj. An imaged

3D planar scene gives rise to this form of depth map.
Retaining the FOE, rotation and focal lengths of sets A and 5, we generated flow

fields for the planar and fractal depth maps with d = 1.7,1.5,1.3 and 1.1. The high-
frequency content of the depth map increases with decreasing d. The results of FOE
estimation using our algorithm are shown in Table 4. For both sets A and J5, the FOE is
estimated with zero error e. The angular error ew, indicated in 10-3 rad, is very small for
A and zero for B. This is not surprising, considering that the true FOE for A lies between
grid points. Figs. 5(a) and (b) show the extreme-case depth maps which are planar and
fractal respectively, with d = 1.1. The corresponding flows generated using sets A and
B are plotted in (c) and (d). Finally, the error surface contours, together with true (+)
and hypothesized (x) FOE, are shown in Figs. 5(e) and (f) respectively.

22

5.1.6 Performance vs. Field of View

Until now, we have restricted ourselves to flow fields generated by a camera with a
"normal" field of view (FOV), which is typically between 30 and 45 degrees. The nature
of the flow field varies considerably as the focal length, or equivalently, the FOV, changes.
A robust solution to the 3D SFM problem must operate across a range of fields of view.
With noiseless data, our algorithm locates the FOE without error for / between 200 and
800 pixels, corresponding to FOVs between 18 and 65 degrees. To facilitate a better
understanding we examine the performance with noise in the flow field. We generated
flow fields for sets A and B, with noise level r\ set to 10.0. This is achieved by choosing
appropriate values of a.

Table 5 provides the results of this experiment. The FOE is estimated with reasonable
accuracy, and the rotational error (tabulated in 10~3 rad) is very small for all cases. As
the focal length increases, so does the a needed to achieve r\ = 10.0. As a consequence,
e also shows an upward trend. Fig. 6 shows the extreme cases of our experiment. The
synthesized noisy optical flow fields corresponding to / = 200,800 and 800 pixels, using
parameter sets A, A, and B, are shown in Figs. 6(a), (c) and (e) respectively. The error
contours together with true (+) and estimated (x) FOE are shown in Figs. 6(b), (d)
and (f). Despite obvious large perturbations in the flow, our algorithm performs well in
locating the FOE.

5.1.7 Effect of Mis-estimated Focal Length

In the above discussion, we have assumed that the focal length of the camera is known
accurately. This is realistic in the real world as the physical parameters of the camera are
either specified or can be measured using camera calibration algorithms. Nevertheless,
characterizing the sensitivity of our algorithm to mis-estimated focal length is useful since
this sensitivity determines the deviation of our FOE estimates when the focal length itself
is known (or estimated) imprecisely. Furthermore, in situations where the focal length is
altogether unknown, this study reveals what parameters, at a minimum, can be computed
with some degree of reliability using an arbitrarily chosen focal length.

Our final experiment on synthetic data sets involves estimating the FOE from noise-
less, dense flow fields using parameter sets A and B. Unlike the previous experiments, the
focal length assumed in the computations is made to vary over the range 200-800 pixels
in 20-25 factor multiples, while the true focal length is fixed at 400 pixels. Table 6 provides
a summary of the results of this experiment. Excluding the extreme wide angle case (200
pixels), the FOE estimate is very good. In the extreme case, the FOE is displaced by 15
and 11 pixels for A and B respectively. These results lead us to claim that the algorithm
is relatively insensitive to the focal length, insofar as the FOE estimate is concerned. For
the angular velocities, this does not hold. Cbx and (by are approximately scaled by the
ratio of the true focal length to the chosen focal length. However the rotation along the
optical axis is relatively robust to the choice of focal length.

The input optical flow fields for this experiment are shown in Fig. 1(d) and Fig. 2(d).
The evolution of the error surface contour with respect to focal lengths of 200, 283, 400,
566 and 800 pixels are shown in Figs. 7(a) and (b), Fig. 3(a), Figs. 7(c) and (d) for the
first case, and in Figs. 7(e) and (f), Fig. 3(b), Figs. 7(g) and (h) for the second.

23

Set A
Focal Length i 3 e CJX Wy wz ao
True: 400 102.0 51.0 -2.000 5.000 -8.000

200 103.5 62.5 11.05 -3.163 9.799 -7.151 4.975

238 103.5 56.5 5.10 -2.972 8.283 -7.396 3.477

283 102.5 53.5 2.00 -2.658 7.025 -7.633 2.157

336 102.5 51.5 0.00 -2.338 5.929 -7.840 1.001

400 101.5 51.5 0.00 -1.985 5.013 -7.995 0.020

476 101.5 50.5 0.00 -1.705 4.216 -8.110 0.845

566 101.5 50.5 0.00 -1.443 3.548 -8.201 1.658

673 101.5 50.5 0.00 -1.219 2.985 -8.265 2.177

800 102.5 50.5 0.00 -1.030 2.498 -8.335 2.704

Set B
Focal Length i 3 e War Uy &z tu

True: 400 127.5 201.5 5.000 3.000 4.000

200 132.5 187.5 14.87 8.973 5.745 2.983 4.935

238 131.5 193.5 8.94 7.852 4.880 3.329 3.481

283 130.5 197.5 5.00 6.808 4.142 3.606 2.174

336 128.5 199.5 2.24 5.850 3.543 3.834 1.022

400 127.5 201.5 0.00 5.000 3.000 4.000 0.000

476 126.5 202.5 1.41 4.248 2.540 4.120 0.890

566 125.5 202.5 2.24 3.589 2.152 4.201 1.658

673 124.5 202.5 3.16 3.029 1.824 4.262 2.310

800 124.5 202.5 3.16 2.553 1.534 4.292 2.867

Table 6: Performance as a function of incorrectly estimated focal length

24

Our experiments using synthetic flow fields illustrate the strengths and limitations
of our algorithm, and provide useful insight regarding its domain of applicability. In
particular, we have shown that our approach is robust to all the commonly encountered
issues in flow field analysis, primary amongst which are noise and sparsity. It remains to
be seen how our algorithm can be applied to real-world problems; this is our focus in the
next section.

5.2 Experiments on Real Data

Although our technique for FOE estimation works well in theory and in simulations,
applying it to solving real world problems presents a whole new set of challenges. In the
data processing chain, our algorithm uses a precomputed optical flow field and provides
as output the FOE, rotational velocity and depth map (up to a scale factor). Thus, its
performance is to some extent circumscribed by the accuracy of the flow field estimation
pre-processing stage. While the FOE and rotational velocity estimates are reasonably
robust to errors in the flow field, the same is not true of the depth map. This is inevitable,
and can be explained by the redundancy. Redundancy, quantified here as the number of
equations containing the relevant term, is much higher for the FOE and rotation com-
pared to each inverse depth estimate. Moreover, the depth map is particularly unreliable
near the FOE since even small errors in its estimate translate into large relative errors
in the coefficient corresponding to the inverse depth.

Thus, for demonstrating practical applicability, we have two problems at hand, viz.
(1) how to accurately estimate a dense optical flow field and (2) how to effectively use
the variably unreliable depth map that our algorithm computes. In this context, it must
be mentioned that our algorithm does not enforce a non-negativity constraint on the
computed depth map, and negative estimates are very likely to be obtained. In one
sense, a negative estimate for depth is preferable to a positive estimate with large error,
since the former is obviously invalid while the latter cannot be identified as such.

5.2.1 Applications

As mentioned in the introduction to this paper, 3D SFM has several application areas.
We have considered five applications which are, in increasing order of complexity, 3D
stabilization, rangefinding or depth estimation, independent motion detection, obstacle
detection, and 3D model building for virtual reality. 3D stabilization is the process
in which the jerky 3D rotation of a moving camera is compensated by reversing the
rotation, in order to stabilize the image. Depth estimation and obstacle detection are
self-explanatory. Detection of independently moving foreground objects is trivial when
the camera is stationary. However, when the camera is itself moving, this process gets
tricky. One cue for detecting such objects is to check for consistency of 3D motion
over the scene. Likewise, obstacle detection looks for areas in the image whose -pth is
inconsistent with a level profile of the ground. 3D model building from a sequence of
images is the ultimate application since it extracts all the 3D information in a sequence
into a virtual reality model. Re-creating the image sequence is achieved by retracing
the 3D path through the model "world". Moreover, alternate paths can be traversed,

25

generating alternate views that did not exist in the original sequence.

5.2.2 Optical Flow Estimation

Early in our experiments, we noticed that the standard optical flow techniques [32] pro-
vided neither the accuracy nor the density needed in most real applications. Despite sev-
eral decades of work on differential techniques for motion estimation (including ours [33]),
the standard algorithms were unable to obtain any reasonable flow field estimate for the
real video sequences. The low resolution of the CCD sensor, temporal aliasing caused
by coarse sampling intervals, and unsteady motion of the camera are contributing causes
to the failure. Barring 3D stabilization (where depth estimates are not required), all the
other applications use an exhaustive search based image matching technique developed
by us. This process is based on block matching with a small refinement to give subpixel
estimates. The flow field used for 3D stabilization is generated using the overlapped basis
optical flow field formulation [33]. This is sufficiently accurate and very fast to compute.

There are three functional components to our block matching based optical flow esti-
mation method. The first and most compute-intensive component is the block matching
itself. Since this technique is based on matching, it operates on a temporal pair of im-
ages. For each pixel in the current image, a 7 x 7 template is marked around the pixel.
This template is compared across a search space in the previous image using the absolute
error criterion. The shift corresponding to the minimum total absolute error across the
template forms the integral part of the computed flow. We have not used any accel-
erated search technique here although a multiresolution search can speed up this step
substantially.

The second component of our flow computation technique is the estimation of subpixel
shift. For this, we use an ad-hoc rule. We compute the total absolute error error at ±1
pixel from the best shift along both axes. We fit a second-degree polynomial to the
error profiles independently in each direction. We pick the minimum of this polynomial,
which can be shown to be in [-0.5,0.5), as the fractional part of the computed flow. The
final functional component is the determination of whether or not there is sufficient 2D
information at each pixel to reliably compute flow. For this, we use two criteria, viz. the
determinant and the condition number of the matrix

M =
P II

Uy Py
(57)

where Ix and Iy are the image gradients, and the averages are computed over the 7 x 7
template. Only when the determinant and condition number are respectively larger and
smaller than two preset parameters is the pixel flagged as one for which flow can be
computed. In practice, the integral and fractional flow are computed subsequent to this
determination.

The subpixel shift estimator is not particularly accurate. However, with no subpixel
estimates, the computed depth map often shows a sawtooth pattern. This is somewhat
mitigated with the above approach although better techniques like phase correlation will
presumably give even better results. One way of improving the subpixel estimates is
to blur the input images. An analysis of the histogram of computed velocities shows

26

a more uniform distribution than with no blur. Undeniably, several possibilities exist
for improving the performance of this process. In summary, our flow technique is crude
though very effective.

5.2.3 3D Stabilization

Stabilization is a differential process that compensates for the "unwanted" motion in an
image sequence. In typical situations, the term "unwanted" denotes the motion in the
sequence resulting from the kinematic motion of the camera with respect to an inertial
frame of reference. In these situations, the "unwanted" component of motion does not
carry any information of relevance to the observer, and indeed strains its functioning.
The more common 2D image stabilization techniques apply an interframe translation,
similarity, affine or perspective transformation to compensate for image motion. These
often perform poorly when the scene is richly structured in 3D.

When a 3D scene is being imaged by an unsteady camera, the resulting image motion
is a result of the camera parallax motion (translation) as well as camera rotation. Since
the parallax shift cannot be compensated for and is often deliberate or "wanted", it is the
rotation that must be anulled. Computing the 3D rotation in an image sequence requires,
in effect, that the 3D SFM problem be solved. The rotational component of motion is
readily computed once the FOE is determined. For this problem, the depth structure of
the scene is largely irrelevant. This allows us to use the overlapped basis technique [33]
for computing the flow field with no detriment. The advantages of using the overlapped
basis flow field estimator are improved accuracy and computational speed.

Figs. 8 (a) and (b) show the first and hundredth frames of the Martin Marietta
sequence. The camera is mounted looking ahead on a vehicle as it traverses unpaved
terrain. There is sufficient texture in most of the image, and the interframe displacements
are small, permitting differential optical flow computation. The FOE and rotation angles
are computed using our algorithm. The estimated pitch, yaw and roll plots are shown in
Figs. 8 (c), (d) and (e) respectively. These are in excellent visual compliance with the
results obtained by Yao [34].

Fig. 9 demonstrates the effect of 3D stabilization. Fig. 9(a) shows the twentieth frame
of the sequence. We chose this frame as it displays higher than average angular deviation
from the first frame. With no stabilization, the difference between the twentieth and first
frames is shown in Fig. 9(b). The fully stabilized image (compensated for roll, pitch and
yaw) and its difference from the first frame are shown in Figs. 9(c) and (d) respectively.
In the difference image, areas near the camera show larger deviations than those at a
distance. This is the effect of translation of the camera.

Since our algorithm actually computes the three rotation angles for each frame, we
can go one step further to perform "selective stabilization". For instance, if we wish to
compensate only for camera roll, we disregard the effects of pitch and yaw while dero-
tating the frames. Fig. 9(e) shows the twentieth frame of the Martin Marietta sequence,
stabilized for roll only. The difference from the first frame is shown in Fig. 9(f). The
parallel horizon and mountain profile in this figure reveals the unstabilized pitch and yaw
motion. Extending this concept, one can selectively stabilize for certain frequencies of
motion to eliminate handheld jitter while preserving deliberate camera pan, etc.

27

5.2.4 Independent Motion Detection

Detecting an independently moving foreground object against a stationary background
is trivial if the camera is fixed. Frame differencing is often sufficient to accomplish this
job. When the camera is moving with respect to the background, more sophisticated
techniques must be used. If the background can be assumed to be approximately planar,
2D stabilization steadies the background. The moving foreground can be located by
frame differencing the stabilized image sequence.

In a true 3D scenario with the camera undergoing 3D motion and a richly structured
3D background, no global image transformation can stabilize all background objects.
Here, we use the consistency of the computed depth map that solves the 3D SFM as a
cue to locate independently moving foreground objects. Areas that have a negative depth
or very small positive depth are marked as belonging to foreground objects. In theory,
this is not a sufficient discriminant. What is actually computed is more accurately the
"time-to-collision" and not the inverse depth. In theory, there may exist areas whose
time-to-collision with the image plane lies within valid limits. An alternate technique is
to compute the difference between the observed optical flow and that calculated using
the estimated 3D motion and structure, for each pixel where flow is known. However, in
our experiments we found the first cue sufficient.

Fig. 10 shows the results of our first experiment. Two consecutive frames of the se-
quence, gathered from a forward-translating vehicle on a highway, are shown in Figs. 10(a)
and (b). The computed flow between these frames is shown in Fig. 10(c). The depth maps
generated from analysis by our algorithm, and after processing, are shown in Figs. 10(d)
and (e) respectively. Here, the white areas are those where no depth estimate is avail-
able. Background regions are marked in light gray. Receding and approaching areas are
indicated by dark gray and black respectively. The raw depth is processed by a series of
morphological steps of erosion and dilation. Fig. 10(f) overlays the processed result on
the original image. It can be seen that the vehicle near the center of the frame is well
segmented as a reading object and the vehicle near the edge is marked as an approaching
object.

Our next experiment demonstrates a situation where although the FOE estimation
mechanism is ill-suited, the result is very accurate. Figs. 11(a) and (b) are two successive
frames of the Radius sequence. The camera is mounted looking sideways from a moving
vehicle. The camera translates along the image plane and hence the FOE lies at infinity
(or very far away from the image center). The central assumptions of our algorithm are
violated, rendering our technique inapplicable in principle. The computed flow between
frames is shown in Fig. 11(c), revealing the significant rotation as well. Our algorithm
estimates the FOE to lie on the right-hand side at the periphery of the search space, which
is itself arbitrarily offset to the right by 300 pixels. This indicates the likelihood that
the true minimum lies even further beyond. The flow reconstructed from the computed
depth map and motion parameters is shown in Fig. 11(d). Visually, this is in excellent
agreement with the input flow. The processed depth cue is shown in Fig. 11(e) with the
same color legend as used in Fig. 10. The pylon is marked as a distant object and the
vehicle is segmented out well (Fig. 11(f)).

28

5.2.5 Rangefinding

Accuracy in the depth estimates is not very critical to the process of locating mov-
ing foreground objects. Accuracy assumes a higher importance for depth estimation or
rangefinding. The final applications, obstacle detection and 3D model generation, build
on the rangefinding process. Results of our experiments are shown in Figs. 12 and 13.
Subfigures (a) and (b) are two consecutive frames of the sequence, (c) is the estimated
optical flow and (d) is the computed depth map. White areas indicate no flow and
therefore no depth estimate. Darker regions are farther from the camera.

Fig. 12(e) is a plot of the depth as a function of image ordinate. Correcting for
projection, Fig. 12(f) plots depth vs. coordinate along the horizontal axis. All rows of
the image are collapsed in these plots. Likewise, Fig. 13(e) is a plot of depth vs. image
abscissa and (f) corrects for projection. The cylindrical profile of the sponge is seen as
the arc formed by the cluster of plots in Fig. 12(f). Similarly, the ground plane shows up
as the linear cluster of points in the lower half of Fig. 13(f)

Closer examination of Figs. 12 and 13 shows certain periodicities in plots (e) and (f).
This is a result of imperfect subpixel flow estimation. Our observation has been that
despite the subpixel correction explained in Section 5.2.2, a histogram of velocities shows
a strong preference for integer shifts. This causes a "staircase" effect in the flow estimate
which is accentuated in the computed depth map. But, the cluster of row-wise plots of
the depth in Fig. 12 (column-wise for Fig. 13) smooths out this artifact.

5.2.6 Obstacle Detection

Building on the rangefinding mechanism, we fit a ground plane to the computed inverse
depth map. A plane in 3D shows up as a planar function relating the inverse depth to
the image coordinate. Let the ground plane be given by AX + BY + CZ = 1. In the
image coordinate system,

Ax + By + Cf = /|

ax + by + c = h(x,y) (58)

which is a planar function for the (scaled) inverse depth h(x,y). We fit a plane to the
valid values of the computed inverse depth and look for significant deviations from this
plane. While fitting the ground plane, we consider only the lower two-thirds of the image
area, assuming, as a rule of thumb, that the top portion of the image looks above the
horizon. Some morphological operations are used to clean up the detected regions of
interest.

Figs. 14 and 15 show the results of two experiments on obstacle detection, (a) and
(b) are consecutive frames for which the flow field is shown in (c). (d) is the computed
inverse depth map, where white regions are areas where no flow, and therefore no depth
estimate, is available. Darker areas are closer to the camera, (e) is a contour plot of the
magnitude of the deviation of the computed inverse depth from the planar fit. The final

29

results showing detected obstacles superimposed on the original image are shown in (f).
False alarms, where present, are small and the segmentation is very good.

5.2.7 3D Model Building

In this final experiment involving real data, we perform an exploratory investigation
of the ultimate application of 3D SFM, viz. the process of building 3D models from
image sequences. Here, the processing chain does not terminate upon computation of
the depth map, or upon locating outliers from the ground plane. Rather, a significant
portion of the effort is directed towards digesting the computed depth map values into a
meaningful scene model. Even the relatively simple modeling technique used by us in this
experiment is highly compute-intensive. Here, more than in the previous examples, the
overall accuracy of the process hinges on the pre- and post-processing stages. "Accuracy"
is used here as a subjective figure of merit.

Our 3D modeling paradigm is built around the Virtual Reality Modeling Language
(VRML). VRML offers a comprehensive vocabulary, ubiquity, and the accompanying
visualization tools that allow us to concentrate on building rather than rendering the
model. We build our 3D models with only planar faces. Each planar face is bounded by
a polygon which is not necessarily convex. Thus, each face is described by its bounding
polygonal vertices in 3D, and a superimposed texture map. Building the 3D scene there-
fore involves breaking up the 2D image into a set of polygonal regions whose internal
pixels lie approximately on a plane, followed by computing the orientation and location
of each planar region. It can be naively claimed that the latter step can be solved using
(58), so what remains is to accurately segment the given scene into polygonal regions.
However, there are a few hidden complications that provide daunting challenges at all
stages of processing. These steps are described below in detail.

• Flow Computation and FOE Estimation: As in our previous experiments, we use
two-frame full-search block matching to determine the optical flow. As before,
subpixel flow estimates are critical to the overall accuracy. This is followed by esti-
mating the focus of expansion and inverse depth map. The output is a potentially
sparse set of inverse depths over the image area.

• Image Segmentation: In parallel to the previous step, we segment the image into ar-
eas we think fit well to planes in 3D. One possible method is to manually demarcate
these segments. Choosing to perform this task automatically, we have developed a
simple system to segment the image into areas of almost uniform intensity. Here,
we make a critical assumption that adjacent pixels of similar gray level belong to
the same physical plane. This holds reasonably well in real imagery since intensity
differences often exist between foreground and background objects. The relative
depth difference within each object is nearly zero compared to the absolute depth
from the camera. This approach leads us to a paradox. Segmented regions are
largely smooth at their interiors and have large derivatives at their boundaries.
Often, a boundary is fragmented into numerous tiny regions of no practical value
in 3D model building. But, it is at these high-derivative pixels that good flow esti-
mates are available. Thus, useful and reliable flow estimates are available mostly at

30

•

and outside the periphery of segmented regions, while most of the interior provides
scanty information.

In order to minimize the wastage of useful flow information in fragmented peripheral
regions, it is necessary to draw crisp boundaries. Strong edges must be reinforced,
and weak edges suppressed, as a precursor to region growing. We use the Grad-
uated Non-Convexity (GNC) algorithm [35] to perform discontinuity-preserving
image smoothing. The image intensity data is made to fit to a membrane which is
allowed to break under certain stresses. The stiffness of the membrane governs the
smoothing, and its yield point governs the ability to preserve discontinuities. The
GNC algorithm is iterative, starting with a convex cost function until convergence
at the desired error cost function.

The GNC step is followed by region growing. After segmenting the image into
near equal intensity regions, the boundaries of these regions are vectorized to form
polygons. Segmentation can be improved by using more sophisticated techniques
like active contours, or using more informative data like color images.

Plane Estimation: Using the reasoning of (58), we can develop a linear system
of equations relating the image plane positions and corresponding scaled inverse
depths for points within each region where the depth is known. However, this is
an incomplete and logically flawed solution. This is because the computed plane
must have positive depth throughout the interior of its corresponding region. A
standard linear system of equations does not guarantee this. To better illustrate
this point, consider a one-dimensional simplification.

Let there be ten equally spaced data points {di, i = 0,1,..., 9}, of which only the
first two are known. Let d0 = 1 and dr = 0.8. With no constraints, the best
line fitting these data points does so exactly, and extrapolates di: i = 6,7,8,9 to be
negative. Since this is unacceptable, the non-negativity constraint must be imposed
on points where the data is not known. In the ID case, it is sufficient to impose this
constraint at the two endpoints of the data vector. When the data to be fit has a
domain in 3£2 and the model is planar, it is sufficient to require that non-negativity
be satisfied at the boundary of the region.

Let {xi,yi,di} be the set of x and y coordinates and corresponding scaled inverse
depths at points with known flow, for a particular image region. Also, let {£,-, y,} be
the set of periphery points for the same region. We have the following constrained
minimization for solving for the plane parameters (a, 6, c):

min J2(axi + hi + c-dif s.t. ax{ + h$i + c > 0. (59)
i

This is a quadratic programming problem with linear constraints. We include the
constraints by forming a composite cost function

JW = IZ^Xi + byi + c-dif + X^piaxi + byi + c)
» i

, x f x2 x < 0
**> = { 0 *>o (6°)

31

with a penalty A which is gradually increased from zero. Minimizing J(A) is the
most computationally expensive step of the process. Faster solutions [37] are com-
mercially available as software packages.

Conversion to VRML: At this stage, we have a list of planar polygons in 3D. The
3D coordinates of their vertices are known and lie ahead of the camera. Two
issues remain in converting this list to a usable format. First, the polygons can
potentially be non-convex. Moreover, they may be multiply connected (i.e. they
may have "holes" in them). In either case, the polygons are broken up recursively
into triangular faces until only a singly connected convex polygon remains. Together
with the triangles, this final polygon forms the 3D model of its parent region.

The second issue is one of mapping a texture onto each face. Since the normal
view of the scene is given, the projection of the texture on each face is known. In
order to determine the texture map used to overlay the face, the known projection
must be rewarped to the plane of the face. Although this is not mathematically
complicated, tricky data storage issues are involved. We have chosen not to carry
out this rectification on the texture data, at the cost of enduring visual distortions
in our experimental results. In our opinion, this reprojection is better suited to be
merged with the rendering mechanism.

Experiment: Using the procedure outlined above, we performed an experiment on
the image pair data shown in Figs. 16(a) and (b). The computed optical flow and
inverse depth map are shown in Figs. 16(c) and (d) respectively. In the latter, white
areas are those where no valid depth estimate exists. Fig. 16(e) shows the segmented
regions. Certain areas like the road are oversegmented, i.e. several adjacent regions
correspond to the same plane. On the other hand, choosing parameters to produce
fewer regions leads to undersegmentation, e.g. the van being merged with the
sky, which is more undesirable. We solve the quadratic programming step using a
conjugate gradient algorithm. The plane parameters (a, 6, c) are computed for each
region and the inverse depth map reconstructed as shown in Fig. 16(f).

Fig. 17 shows six rendered views of the 3D model we generated. The first image,
Fig. 17(a), is the rendering from the normal viewpoint. "Cracks" in the image are
due to the polygonal boundary approximation of regions. Also, tiny fragmented
regions are rejected by the algorithm and and are not rendered. Note that the
realism of our generated model4 is better seen using a VRML browser than through
printed images. As mentioned earlier, the texture maps are not rectified, giving
rise to systematic distortions in the images.

The first synthetic viewpoint is from above the normal. The ground drops out
while the van and other distant objects remain almost at the same level as before
(Fig. 17(b)). Next, we generate the views to the left and right of the normal, shown
in Figs. 17(c) and (d) respectively. The road surface warps accordingly. Finally, we
move the viewpoint ahead of the normal in Figs. 17(e) and (f). The ground diverges
outward and the rest of the image changes as expected. This exploratory study

4Available at http://www.cfar.umd.edu/ shridhar/Demos/index.html

32

shows the feasibility of using our algorithm to generate 3D models from video, and
also analyzes the post-processing steps, which are indeed more complicated and
crucial than depth estimation.

6 Conclusions

The 3D structure from motion problem is very interesting both from the theoretical
and the application points of view. Although in theory 3D motion and depth can be
recovered simultaneously from a flow field, the solution has proven to be difficult. 3D SFM
provides valuable cues for depth estimation, 3D stabilization, robotic navigation, obstacle
avoidance, time to collision and virtual reality model generation. But a theoretically
sound, robust and computationally tractable solution has eluded researchers. In this
paper, we have presented what we believe is a viable solution to the problem.

Our motivation in this work has been to come up with an elegant solution that fully
exploits the linear dependence of the optical flow on the focus of expansion and on the
scaled inverse depth map. The fundamental result in this paper is a theoretical proof of
our claim that a partial search for the focus of expansion is computationally equivalent
to performing a finite number s of 2D FFTs. Our experimental results on a wide variety
of synthetic data representing noise in the flow field, sparsity of the computed flow,
uncertainty in the focal length estimate, type of underlying depth map and field of view
demonstrates the correctness, robustness and performance envelope of our algorithm.
We show, through a variety of experiments, the utility of our algorithm for performing
3D stabilization, rangefinding, independent motion detection, obstacle detection, and 3D
virtual reality model building. Our experiments validate the theory behind our approach,
and our claims.

3D SFM is an old problem and has received much attention over the years. In par-
allel, the computational power available to the image analyst has steadily increased over
time. At this juncture, it is viable to use fast search-based techniques to solve computer
vision problems. An advantage of our algorithm is its ready portability to digital signal
processors (DSPs). The powerful FFT support of DSPs makes it conceivable to build an
extremely fast (possibly parallel) DSP-based computing engine to implement our algo-
rithm. Having a robust solution to 3D SFM will allow future researchers to concentrate
their efforts on higher level vision steps, such as primitive modeling and logical inference,
in building computer vision systems.

Acknowledgement

The author would like to thank Profesors Rama Chellappa and Azriel Rosenfeld for their
comments and criticisms.

5More specifically, 43

33

Appendix

A Proofs of the Fast Computability Theorems

A.l Proof of Theorem 1

q{io,jo) = a'S[i0Jo]b
N2-l

= Yl ai k Si,i[i0, jo]
i=0

N2-l

= 2J aibiSii/N],imoaN[io,Jo]
i=0

N-l N-l

= X3 X) aiN+jbiN+jSi,j[ioi Jo]
i=0 j=0

N-l N-l

= EE C,-jStj[»'o, jo] (61)
i=0 j=0

N-l N-l

— 2-j /L/ ^i,3^(i+io)iaodN,{j+Jo)iaodN (62)
i=0 j=0

where the N x N matrix C is comprised of component-wise products, C;j = aw+jbiN+j-
(62) is a 2-D spatial correlation of the "image" C with a sliding "template" S. Each
element of the resultant matrix after correlation is the value of q(io,jo) for the appropriate
shift. This operation can be performed in 0(N2 log N) operations using Fourier domain
techniques.

Let T be the discrete Fourier transform operator. Form the N x N matrix Q s.t.

Qi,j = ?(*', j)- We have
fQ(k,l)=Fc(-k,-l)fs(k,l) (63)

where the discrete Fourier transforms TQ, TQ, and T§ are defined on the matrices C,
S and Q respectively. We can use the Fast Fourier Transform to compute the terms in
(63), when N = 2k, in 0(N2 log N) steps. The product in Fourier space takes 0(N2) op-
erations, requiring an overall complexity of Ö(N2 log N) for the computation of q(io,jo)-

A.2 Proof of Theorem 2

Writing out a and b in terms of their components

o = (ao,o Oo,i «1,0 ai,i • ■ • OJV-I,O ON-I,I)

b = (&o,o Vi &i.o &i,i ••• bN-ito &JV-I,I)
(64)

and using
£[*o, jo] = BlockDiag{sLi/7vj,imodiv[s!o,jo]} (65)

34

we get

9(*'o,io) = a'S[io,j0]b
JV2-1

= E \aifiho^[i/N},imodN00[ioJo] + a»,o6j,lS[_t7JVJ,tmodiV01[«0,io]
i=0

+ di,ibi,o^[i/N\,imodN10[io, jo] + ai,ik,iSii/NitiiaodNn[i0J0]j
JV2-1

= EE
i=0 2

JV-1JV-1

= EEE
2 t=0 j=0

= £

G;,O&;,O S [i/ATj ,imodAT00 [io, io] a»,o&t,i S [i/ivj ,imodjv01 [io, io]
Oi.l^-.oS Ij/ATJ ,imodJV10 [«0, Jo] flj.l k,l S [i/ATJ ,rniodJVn [«0, jo]

Qjoopijoolio, jo] Ci,j01S{j01 [i0, io]
Q,j 10St, j 10 [io, io] Qj 11 Si j n [io, io]

N° W° ij'oo^*.Joo^0'^0J 2J;=o Sj=o ^«.Joi^*.ioi^°'-?o]
. 2^i=o L>j=a ^hJio^hhov-o^Jo] Y^i=o J2j=o ^i,Ju^i,jnU'OiJo]

(66)

£2 denotes the sum of the four entries of the 2 x 2 matrix summand. C € $2Nx2N is
formed by the componentwise product of a and b:

C^=(r'j0° ^) = (a^h,o akfibktl\ k = iN + j
\ ^«'.Jio ^hhi) \ °fc,iöfc,o o-k,\Ok,\ I

(67)

Each of the entries of the summand matrix in (66) is of the form (61) and is FC according
to Theorem 1. The four components of the N2 signals for each pair (i0,io) can be summed
in 0(N2) operations. The overall complexity of evaluating g(io,io) over the permissible
values of i0 and j0 is Ö(N2 log N). Hence, q(i0,y0) is FC.

A.3 Proof of Theorem 3

?(*o,Jo) = a'S{i0,jo)b
JV2-1

= 2_^ aibiSli/N\+i0,imodN+Jo
i=0

JV-1 JV-1
= Z_^ 2^ aiN+jbiN+jSi+i0,j+j0

izzO j=0

Define C € 3t2Nx2N by

Q,j —
a,iN+jbiN+j

0
i,i€{0,l...iV-l}

otherwise.

(68)

(69)

Noting that

Si+io,j+3o = S(i+io)mod(2JV),(i+io)mod(2JV), Vi, j, i0, io € 0, 1 . . . N - 1 (70)

we get

2JV-1 2JV-1

?(?0,io) = J2 E CMS(i+io)mod(2JV),(i+j0)mod(2JV), Vi0,io € {0, 1 . . . N - 1} (71)
i=0 j=0

35

which is of the form (62), with 2N replacing JV. Thus q(i0,jo) can be computed in
0{{2N)2 log(2iV)) = Ö(N2 log N) operations, proving the theorem. Note that the Fourier
technique will calculate q(io,jo) over a larger domain, viz. {0,1... 2N - l}2, of which
the useful values are lie within the "North-West" quarter of the matrix.

A.4 Proof of Theorem 4

Writing out a and b in terms of their components as in (64) we get

?(*o,io) = a'S(i0,jo)b
N2-l

— ^2 \ai>° ^>° [S\i/N\+io,imodN+j0]oO + Of.O k,l [S[i/N] +i0,imodN+j0]01
i=0

+öi,l k,0 [S[i/ATJ+i0,imodAT+io]lO + ai,l &t,l [S\i/NI+i0,im.odN+johlj

<liN+j,obiN+j,o[Si+io ,3+jo 3 00 aiN+jflbiN+j,l [Si+t0 J+jo J01

OtJV+j',1 biN+j,0 [Si+i0, j+j0] 10 OtJV+j,l biN+j,l [Si+io j'+io 3 n

As in A.3, we define C G sR4^*4iV by

CQ,0 • • • Co,2iV-l

JV-1AT-1

= EEE
2 j=0 j=0

C =

Cjj — "

C2JV-1.0 C2AT-1,2W-1

O>iN+j,0 biN+jfi CliN+jfibiN+j,!
0>iN+j,l biN+j,0 Q>iN+j,lbiN+jti

0 0
0 0

i,j€{0,l...tf-l}

otherwise.

Using the reasoning in (70), we get

q(io,jo) = J2
2 L

9oo 9oi
9io qu

Vto,jo€{0,l..--N-l}

2JV-1 2AT-1

900 = X] ^2 Cij00[S(,-+,-0)mod(2JV),(i+io)mod(2iV)3oO
i=0 j=0

2JV-1 2N-1

qoi = XI X) Ci,JoJS(i+Jo)niod(2iV),(j+Jo)mod(2iV)]oi
i=0 j=0

2AT-1 2JV-1

910 = X) X) Cij10[S(i+i0)mod(2N),0-+io)mod(2Ar)]lO
i=0 j=0

2iV-l 2JV-1

911 = E E Q,Jii[S(i+i0)mod(2JV),(i+io)mod(2N)]ll
{=0 j=0

(72)

(73)

(74)

As before, £2 denotes the sum over the four components of the summand matrix. Each
of the terms qu is of the form (71) and is FC by Theorem 3. Since the components
themselves can be summed in Ö(N2) operations, the overall complexity in computing
q(i0,jo) over the domain {0,1... N — l}2 is 0(N2\ogN), proving the theorem.

36

B FastCompute Specification

Objective: To compute q{i0,jo) = a'M(i0,jo)b,Vi0,j0 e {0,1... N - 1}.
Input: Vectors a,b e ft™2.
Output: Matrix Q <E $NxN, where Qi,j = q(i,j).
Internal Data: M, given by (42).
Data Structures: Matrices M0o,M0i, Mn G $l2Nx2N, initialized to

M0oi,j = (XiAJ - N + -f

Man* = -<*iAi-N+±)(j-N+±)

M1Utj = ai>j(i-N + ±)2

ai'j = (i-N + i)2 + (j-N + iy (75)

Matrices C00,Coi,C10,Cn, Q 6 $2Nx2N, initialized to zero.
Complex valued matrices M00, MQU Afn, C00, Coi, C10, Cn, Q € C2Nx2N.

Steps: 1. Initialize data structures as above.

2. Compute the discrete Fourier transforms M0Q,MQ1 and M1X of
Moo, Moi and Mu respectively.

3. Write out a and b as in (64).

4. Redefine C0o, Coi, Cio, Cn in the upper quarter as

CoOi,j = CliN+j,obiN+j,0

Ooii,j = üiN+jfibiN+j,i

ClOtJ = diN+j,lbiN+j,0

ClliJ = UiN+j,lbiN+jti t

►Vi,j€{0,l...JV-l} (76)

5. Compute the discrete Fourier transforms Coo, Coi, Cio and Cu of
Coo, Coi, C10 and Cu respectively.

6. Set Q to

[Qki = [Coo]:,/!*»]*,, + [Coi]UMoiki

+ [CrdtjlMnhj+fo&jlMn]« (77)

since for a real signal x(n), its Fourier transform x(k) displays
conjugate symmetry, i.e. x(k) = x*(-k). Note that this requires
complex arithmetic. This summation performs, in effect, the sum
over components (£2) in A.4 since Jr~1(x) + F~l{y) = ^(x + y).

37

7. Compute the inverse discrete Fourier transform Q of Q.

8. Populate the output matrix Q copying from Q:

Qij = Qij, i,j e {0,1...N-l} (78)

References

[1] H. Wallach and D. N. O'Connell, The Kinetic Depth Effect, Journal of Experimental
Psychology, vol. 45, pp. 205-217, 1953.

[2] J. J. Gibson, The Perception of the Visual World, Houghton Mifflin, Boston, 1950.

[3] J. J. Gibson, Optical Motions and Transformations as Stimuli for Visual Perception,
Psychological Review, vol. 64, pp. 288-295, 1957.

[4] S. Ullman, The Interpretation of Structure from Motion, Proceedings of the Royal
Society of London B, vol. 203, pp. 405-426, 1979.

[5] J. J. Koenderink and A. J. van Doom, Local Structure of Movement Parallax of the
Plane, Journal of the Optical Society of America A, vol. 66, pp. 717-723, 1976.

[6] K. Nakayama and J. M. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neu-
rons and Space Perception: A Hypothesis, Perception, vol. 3, pp. 63-80, 1974.

[7] H. C. Longuet-Higgins and K. Prazdny, The Interpretation of a Moving Retinal
Image, Proceedings of the Royal Society of London B, vol. 208, pp. 385-397, 1980.

[8] A. M. Waxman and S. Ullman, Surface Structure and Three Dimensional Motion
from Image Flow Kinematics, International Journal of Robotics Research, vol. 4,
num. 3, pp. 72-94, 1985.

[9] A. R. Bruss and B. K. P. Horn, Passive Navigation, Computer Vision, Graphics and
Image Processing, vol. 7, pp. 3-20, 1983.

[10] G. Adiv, Determining Three Dimensional Motion and Structure from Optical Flow
Generated by Several Moving Objects, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 7, pp. 384-401, 1985.

[11] R. Y. Tsai and T. S. Huang, Estimating Three Dimensional Motion Parameters of a
Rigid Planar Patch, IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 29, pp. 1147-1152, 1981.

[12] X. Zhuang and R. M. Haralick, Rigid Body Motion and the Optic Flow Image,
Proceedings of the First Conference on Artificial Intelligence Applications, IEEE
Computer Society, pp. 366-375, 1984.

38

[13] X. Zhuang et.al, A Simplified Linear Optic Flow Motion Algorithm, Computer
Vision, Graphics, and Image Processing, vol. 42, pp. 334-344, 1988.

[14] A. M. Waxman, B. Kamgar-Parsi and M. Subbarao, Closed Form Solutions to Image
Flow Equations for 3-D Structure and Motion, International Joural of Computer
Vision, vol. 1, pp. 239-258, 1987.

[15] A. Mitiche, X. Zhuang and R. M. Haralick, Interpretation of Optical Flow by a
Rotation Decoupling, Proceedings of the IEEE Workshop on Motion, Miami Beach,
FL, pp. 195-200, 1987.

[16] K. Prazdny, Determining the Instantaneous Direction of Motion from Optical Flow
Generated by a Curvilinearly Moving Observer, Computer Vision, Graphics, and
Image Processing, vol. 17, pp. 238-248, 1981.

[17] D. T. Lawton, Processing Translation Motion Sequences, Computer Vision, Graph-
ics, and Image Processing, vol. 22, pp. 116-144, 1983.

[18] A. Mitiche, Computation Analysis of Visual Motion, Plenum Press, New York, 1994.

[19] J. Weng, T. S. Hwang and N. Ahuja, Motion and Structure from Image Sequences,
Springer-Verlag, Berlin, 1991.

[20] A. D. Jepson and D. J. Heeger, Linear Subspace Methods for Recovering Trans-
lational Direction, Technical Report RBCV-TR-92-40, University of Toronto,
http://www.cs.utoronto.ca/ jepson/abstracts/dither.html, 1992.

[21] N. C. Gupta and L. N. Kanal, 3-D Motion Estimation from Motion Field, Artificial
Intelligence, vol. 78, pp. 45-86, 1995.

[22] J. Aloimonos and C. M. Brown, Direct Processing of Curvilinear Sensor Motion from
a Sequence of Perspective Images, Proceedings of the IEEE Workshop on Computer
Vision: Representation and Analysis, Annapolis, MD, pp. 72-77, 1984.

[23] S. Negahdaripour and B. K. P. Horn, Direct Passive Navigation, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 9, pp. 168-176, 1987.

[24] B. K. P. Horn and E. J. Weldon, Direct Methods for Recovering Motion, Interna-
tional Journal of Computer Vision, vol. 2, pp. 51-76, 1988.

[25] C. Fermuller and Y. Aloimonos, Qualitative Egomotion, International Journal of
Computer Vision, vol. 15, pp. 7-29, 1995.

[26] C. Fermuller and Y. Aloimonos, On the Geometry of Visual Correspondence, Inter-
national Journal of Computer Vision, vol. 21, pp. 223-247, 1997.

[27] S. Fejes and L. S. Davis, What Can Projection of Flow Fields Tell Us About the
Visual Motion, Proceedings of the International Conference on Computer Vision,
Mumbai, India, pp. 979-986, 1998.

39

[28] E. P. Simoncelli, Distributed Representation and Analysis of Visual Motion, Ph. D.
dissertation, MIT, 1993.

[29] G. Adiv, Inherent Ambiguities in Recovering 3-D Motion and Structure from a
Noisy Flow Field, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, pp.477-489, 1989.

[30] G. S. J. Young and R. Chellappa, Statistical Analysis of Inherent Ambiguities in
Recovering 3-D Motion from a Noisy Flow Field, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 14, pp.995-1013, 1992.

[31] W. H. Press et.al, Numerical Recipes in C (2nd ed.), Cambridge University Press,
pp.102-104, 1992.

[32] J. L. Barron, D. J. Fleet and S. S. Beauchemin, Performance of Optical Flow Tech-
niques, International Journal of Computer Vision, vol. 12, pp. 43-77, 1994. (Se-
quences and code available at ftp://ftp.csd.uwo.ca/pub/vision.)

[33] S. Srinivasan and R. Chellappa, "Robust Modeling and Estimation of Optical Flow
with Overlapped Basis Functions", CAR-TR-845, University of Maryland, 1996.

[34] Y. S. Yao, "Electronic Stabilization and Feature Tracking in Long Image Sequences",
Ph.D. dissertation, CAR-TR-790, University of Maryland, 1996.

[35] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, 1987.

[36] A. L. Ames, D. R. Nadeau and J. L. Moreland, VRML Sourcebook, Wiley, 1996.

[37] C. T. Lawrence and A. L. Tits, "Feasible Sequential Quadratic Programming for
Finely Discretized Problems from SIP", in R. Reemtsen and J.-J. Ruckmann (eds.):
Semi-Infinite Programming, Kluwer, 1998.

40

..*.«*
*. *. N
». ». «.
*.".«.
......
.. * *
.. * *
. . .

it *

* +

......

..
((^
^^

* K
I K
K K
K K
t *
* t
t t
< *

* *
t ♦
+ t
t ♦
t t
t t

WWWWWW
WWWWWW
WWWWWW
WWWWWW wwwwww wwwwww \\ w\
\

' \\
\\
\\
\\
\\
\\
i\
i\
i\
11
11
11
11
11
11
11
11
11
11
11
ti
it
1 T
IT
T t

I
11111115

I! H nil
nil
ii*

(b)

.► ►»*-.-»_._

> V \, « V » '

(c)

WWWWWW WW\\JJ
WWW«.WWWWW\1 J
ww\«,«,<,».\w\ww\\1
■w\www\i.ww\\\\\
vwwww\\www\\\
".WWW«.W\\\\\\\\\1
W W \ Www\WWW^
www w<.\\\\\\w\l\
«vNV<.\\\1.\\\\\\\\\\\1
NVN«.\W\I*^\\W\\ 1

^^.^^^1^^^u^UU1 t tt

Mk>.«.v^<\^» tm M 11 t
<,<.n»nll»HtttftUt

 ..»»IMttltt
»*» ».t»t(1tH1
► .,.., , ,,..M4Httt1
»,,.,i,tl...tlt(»ttt
«-»»....<>. (»ttl
»».....■.•»■.•■««»»»»tt»

,, ,,,,,■.<»»»<
 ,,■■•»•)» "...,.,,,,.....'<")

^WWWw'

trtrtit /;/// i i t / i \ i ii///
ttr/ttt/////
tt t TTTttt?//
111 tt rttr///
\ 11 tt fttt T r /
t tttT r r ?T f/s
t tt rftrsrsss
tr rt tt r ?/sr s
t Ttft11r r fss
fj-ffttrt ///v>
rrrrffttf s**s*
fffffftf? Ss"**
rtTJfttff S*»s*
tttttttftsss
t ttl t t T sss^**
tttttttftfs-S
fttrrtttrtfs
r tt*ftitrtT/
t tt tt r11ttfr
,rtttt\ttttt

(d)

Figure 1: Set A: (a) shows the underlying fractal inverse depth map, (b) the rotational
flow, (c) the translational flow and (d) the total optical flow field.

41

***** ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* ********* *********

* **** **** **** **** **** **** **** * * ** * * ** * * ** * * * * * * **

****** *******

*** *** *** *** *** *** * **

**** ****
***** **** **** **** ***** ***** ** * * ** * * * * * * * * * * * * * * * * * *
* * * Jt * * * *
* * * * * * * * * * * **

****** ****** ****** ******* * *** ** ** **** ******* ****** ********

(b)

VWVNSV ^
W \ K ************** r
W * * « * *************
\\ K n U ************* *

KV * « ,**r************
»vV «. • r r fmf.**********r

< < < < < i
4- 4-4- 4- 4- 4 4 •
4-4-4- 4-4-44'

k 4-4-4-4- 4- * ■
< < < <

''*'*' *****•****/*** + *■* + + •
*"*******S**S/SJ / 4 rf * * * + '
'>«****SSSI//J'J-JJ / 4 * 4 * * '

• 4 4 V >

• * * + *

\\^\\\^ Hlttt

MtMttftMtf
rtittttrtr*rr

ttttrssj'j'j' * * *

ft***********
ft***********

T
I /
t f
t r
r r
T f
>• r

YAW t rr/,
t rr*,
r * ****s
* ***s
* ***

* * * * * * * * ********** **

j> * * * * *****************

******** ****************

(c) (d)

Figure 2: Set B: (a) shows the underlying fractal inverse depth map, (b) the rotational
flow, (c) the translational flow and (d) the total optical flow field.

42

50 100 150 200 250 50 100 150 200 250

(a) (b)

Figure 3: Ideal case performance: (a) and (b) show the error surface contours for sets A
and B respectively. The true FOE is marked by a + and the estimated FOE by a x.

43

>.».K««S\ \V.VN. v A\ ^J*S ?V '

\ >^,\ *. \ 1^.„^V\ / VS. * O -*f / 'r

^^\\\\^.V\\i\Wt.K |r ft T T . f 1,

. rs i < t

~/.

.... /. \
, t «., t .. <rJ\

- »\ > t r t T -.t.

A . J * /H I

-5 •»

rt.. / .,tf *l />.

■S ..^JVT **•*'*".■ -**■*!!« -''**. *" 1 ^

(a)

X ft U/

N

? ' ?
•* ^--»

,\ ■' t.
f t '1 A

\

*/ <

^/

r

/

(b)

50 100 150 200 250 SO 100 150 200 250

(c) (d)

Figure 4: Worst-case performance with a noisy, sparse flow field: (a) Set A at 80%
density, (b) Set B at 20% density, (c) and (d) error surface contours with true FOE (+)
and estimated FOE (x) corresponding to (a) and (b) respectively. Zero-mean Gaussian
noise with a = 1.0 has been added to (a) and (b).

44

mm

Figure 5: Performance vs. Depth Map Structure: Two extreme depth maps are shown
here, (a) shows the planar depth map and (b) is a fractal depth map with exponent 1.1.
(c) and (d) show flow fields generated with parameter sets A and B and depth maps (a)
and (b) respectively. Corresponding error contours, with true and estimated FOEs, are
plotted in (e) and (f).

45

»• »t SV.?

(e)

Figure 6: Performance vs. Focal Length: Synthesized noisy flow fields and error surface
contours, generated with: (a)-(b) parameter set A, / = 200, (c)-(d) A, f = 800, and
(e)-(f) £, / = 800. Noise 77 = 10.0 for all cases. The true location is marked by a + and
the estimated location by a x.

46

Figure 7: Performance vs. Estimated Focal Length: (a)-(d) error contours for Set A,
(e)-(h) for Set B. The true focal length is 400 pixels, (a)-(d), and (e)-(h) use incorrest
estimates of 200, 283, 566 and 800 pixels respectively.

47

&•■"•*£ '»in*«'"** "' ' ' &...-.** '<Jt — I
S*-.v.-> •

f. '

L Ik ■ %^

fa)

0 10 20 30 70 80 90 100

(c)

(b)

0 10 20 30 40 50 C
Frame number

70 80 90 100

U)

-41 1 1 1 i i 1 i i i
0 10 20 30 40 50 60 70 80 90 100

Frame number

(e)

Figure 8: 3D Stabilization: (a) first and (b) hundredth frame of Martin Marietta se-
quence, (c) pitch, (d) yaw and (e) roll as a function of frame number

48

m

(a)

'"*" i^'v**':

!■:?■•>!

(b)

(c)

•AT7- .;/.'.-i .;:-« --

;■«.' .tf^w-j

<>^*
l«8i£vi .•*;•''y:«*v- TALI

(d)

(e)

I-5H
SSw/aff ..; '«■ 1

1*3*1
» XJ

(f)

Figure 9: 3D Stabilization: (a) twentieth frame of Martin Marietta sequence, (b) differ-
ence between first and twentieth frame with no stabilization, (c) fully stabilized twen-
tieth frame, (d) stabilized difference, (e) stabilized only for roll, (f) difference between
roll-stabilized frame and the first frame of the sequence

49

\#*Zv u^apfryy

(a)

(c)

(b)

^ZLlii

* * * -

(d)

* •*

(e) (f)

Figure 10: Independent motion detection: (a) and (b) two consecutive frames of the
sequence, (c) computed flow, (d) computed depth map, (e) raw and (f) cleaned regions
showing independent motion

50

■~*i

(a) (b)

bk

Vtk

**
**

* Ü ******

»%*» »»»k»»»» *♦ ♦ ** ** kt* ft ottl

4«« * **** **** * * * *

********* *** * ** * **
** ****** ********** * ********** ** ******** ** * ********************
*• **■ **** * ************** ********** *

•r W * **• ************** *
*• ** **•*•*•*• «-W *•*•*• *•*•*■*• *•**•*•**>*•*•*■* *

** *" «VirtrV ***•*■*■ kV/«V • *■*'*'*•*•*'*•*'*'*•*•*
*** v **** ** *w «-vv *• //■ ^ *-ww *•*•

»■

>
V*

**
b*VV V fcb kV t\ S "V. *k *

***** ****** ** *** **•
* ******** * *** **** * * ** ****** ********** * ********** **

• «- *•*'*'*'*• «-W *•*•*• «rVW **•*•*•*'*'*•*** *
w*"" *-* *"** *' *•*•** *"W *> *•** ** «ww *•*•

(c) (d)

(e) (f)

Figure 11: Independent motion detection: (a) and (b) two consecutive frames of the
Radius sequence, (c) computed flow, (d) reconstructed flow from computed 3D motion
parameters and depth map, (e) segmented areas, (f) cleaned regions showing independent
motion

51

(a) (b)

<*f*Ä^*£

» •" ******* ' ************
*00fff*r*%*f*-*1************
W*W* «*V *********
.-*■*■*■***■**■**• i ****' I ******* /

(c)

/"•■»A

(d)

'S

-100 -60

(e)

-02 -0.1B -ai 0,1 0.1* 02

(f)

Figure 12: Rangefinding: (a) and (b) two consecutive frames of the sequence, (c) com-
puted flow, (d) computed depth map, (e) plot of depth as a function of image ordinate
over the entire height of the image, (f) plot of depth along the horizontal axis; the cylin-
drical profile of the sponge is evident

52

_-

(a) (b)

■>.w.N«.\<i.in>tm»
S.NN svv«. m

iv*'*'*'*********** ***n ******
WV •WVS/'lr/irrf 4 44.1*

w

jp^5gi§§

>***'AV,->:J.'wii...i.-. :• ■•■ •' .;•-•: ••■ ■

Figure 13: Rangefinding: (a) and (b) two consecutive frames of the sequence, (c) com-
puted flow, (d) computed depth map, (e) plot of depth as a function of image abscissa
over the entire width of the image, (f) plot of depth along the vertical axis showing the
ground plane as the cluster of points forming a line

53

(a) (b)

. s

V I 1 \ \ \ \ \\ \\\N\N>.SNXXN.N.N
\ \ \ \ \ N, \\\\\\\N\\S\S>

\\\\\\\\S\\\S\
\\\\\\\\\W

\ \ \ \ \\\\\\\\\\NN.\N.NSX"»
\ \ \ \\\\S\\\\\\\\VN\

U^^SS

(c)

\
V

«■IHMHOHHHHI

4\

(e)

IJ o-

(f)

Figure 14: Obstacle detection: (a) and (b) two consecutive frames of the sequence,
(c) computed optical flow, (d) inverse depth map, (e) deviation from ground plane, (f)
located obstacles

54

.'»OSfe*1'*'- ' •:A'."'' • • • • .'••'••.

\i ■!■-/■■''.■"■&#*■■■'- *'--5 ••; *

(a) (b)

V,
///

, . ! \ ' -' •" f f f f N. / // , s-K. ,
litttiirirrrtrtfttr^ s
lllllirrttrrr/s/rsssss
lltllttiritrltsrrsfsss
I l I 1 1 J r T ff fffffffSSSSs
lllltlirrffffffffssss
II rit t rrr /// s , , s ,

'"■'S .■ J * t * l i t IVV\
'SS/s//// / / i i i i v \
'/ssss//lll i i i i i
'SS/S / / / / / I l j l | |

vs/s- y///i i i \ j i

(c)

N *

(d)

(e) (f)

Figure 15: Obstacle detection: (a) and (b) two consecutive frames of the sequence,
(c) computed optical flow, (d) inverse depth map, (e) deviation from ground plane, (f)
located obstacles

55

(a) (b)

::*"

"** « J * * ?

•••• * /*iii

. * / ' ti't
/v.

(c)

v*#b*J§i ^ >

(d)

(e) (f)

Figure 16: 3D virtual reality model building: (a) and (b) two consecutive frames of the J7
sequence, (c) computed optical flow, (d) inverse depth map, (e) automatically segmented
regions, (f) reconstructed inverse depth map

56

(a) (b)

(c) (d)

(e) (f)

Figure 17: 3D VR model building: (a) reconstructed image from normal viewpoint using
3D model (distortion in the images is caused by the texture map not being orthorectified),
(b-f) image generated from other viewpoints: (b) above, (c) to the left, (d) to the right,
(e) ahead and (f) further ahead of the normal

57

REPORT DOCUMENTATION PAGE Form Approved

OM8 No. 0704-0188

Public reporting burden tor this collection of information is «limited to average i "our oef resoonse. including the time for reviewing instructions, searching ensting data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports 1215 Jefferson
Oavis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (07044188), Washington OC 20SÖ3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1998
3. REPORT TYPE AND DATES COVERED

Technical Report
4. TITLE AND SUBTITLE

Extracting Structure from Optical Flow Using the Fast Error Search Technique

5. FUNDING NUMBERS

N00014-95-1-0521
6. AUTHOR(S)

Sridhar Srinivasan

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Center for Automation Research
University of Maryland
College Park, MD 20742-3275

8. PERFORMING ORGANIZATION
REPORT NUMBER

CAR-TR-893
CS-TR-3923

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

Office of Naval Research
800 North Quincy Street, Arlington, VA 22217-5660

Advanced Research Projects Agency
3701 North Fairfax Drive, Arlington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT

Approved for public release.
Distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this paper, we present a robust and computationally efficient technique for estimating the focus of expansion
(FOE) of an optical flow field, using fast partial search. For each candidate location on a discrete sampling of the
image area, we generate a linear system of equations for determining the remaining unknowns, viz. rotation and
inverse depth. We compute the least squares error of the system without actually solving the equations, to generate
an error surface that describes the goodness of fit across the hypotheses. Using Fourier techniques, we prove that
given an N x N flow field, the FOE can be estimated in ö(N2logN) operations. Since the resulting system is
linear, bounded perturbations in the data lead to bounded errors.
We support the theoretical development and proof of our algorithm with experiments on synthetic and real data.
Through"-a series of experiments on synthetic data, we prove the correctness, robustness and operating envelope of
our algorithm. We demonstrate the utility of our technique by applying it to the problem areas of 3D stabilization,
moving object detection, rangefinding, obstacle detection, and generation of 3D models from video.

14. SUBJECT TERMS

Fast Partial Search, Focus of Expansion, Optical Flow
15. NUMBER OF PAGES

60
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 754O-O1-280-55O0 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank}.

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If

-applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one voiume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Blocks. Author(s). Name(s)ofperson(s)
responsible for writing the report, performing
the research, or credited with the content of the
report If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Namefs) and
Address(es). Seif-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NH8 2200.2.
Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Paoes. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

